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Quantum Relative Entropy

 A fundamental quantity in Quantum Mechanics & Quantum 

Information Theory is the Quantum Relative Entropy

of        w.r.t.                        

 It acts as a parent quantity for the von Neumann entropy:
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 It also acts as a parent quantity for other entropies:

e.g. for a bipartite state               : 

 Conditional entropy

 Mutual information
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 Monotonicity of Quantum Relative Entropy under a 
completely positive trace-preserving (CPTP) map
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:

 Many properties of other entropies can be proved using (1)

……….(1)

e.g. Strong subadditivity of the von Neumann entropy

Lieb & Ruskai ‘73
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Two new relative entropies

 Definition 1 : The max- relative entropy of a state        & a 
positive operator        is

  max ( || ) : log  min :S      
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 Definition 2: The min- relative entropy of a state        & a 
positive operator        is

where          denotes the projector onto the support of
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 Remark: The min- relative entropy

is the  quantum relative Renyi entropy of order 0   :

where

min S ( || ) 

min ( || ) : log  Tr S     

11( || ) : log  Tr ( )
1

S  
    








0( || ) S  
0

 lim ( || )S


  




quantum relative Renyi entropy of order 
( 1) 
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Operational significance of

Tr(( ) )I  

 He does a measurement to infer which state it is 

POVM
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 State Discrimination: Bob receives a state 

or 
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 Possible errors

Type I

actual stateinference


 

Type II

 Error

probabilities

Type I

Type II

hypothesis 
testing
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Bob never infers the state 

to be        when it is
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BUT

Hence

= Prob(Type II error |Type I error = 0)



 Compare with the operational significance of ( || )S  

arises in asymptotic hypothesis testing

 Suppose Bob is given many identical copies of the state

 He receives 
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 For n large enough, 

 Prob(Type II error |Type I error
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have similar interpretations in terms of  Prob(Type II error)
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 Like                     we have for 

 Also

 Most interestingly
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 The min-relative entropy is jointly convex in its arguments.

 The max-relative entropy is quasiconvex:

For two mixtures of states                         &
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 Also act as parent quantities for other entropies………..
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Min- and Max- entropies

Just as:

max min( ) ( )H H 

[Renner]

von Neumann 
entropy



mam xin : (( | || )) AB A BIH A SB     

minmin : (: || )( ) AB A BI A B S    

just as:

just as:

( | ) ( || )AB A BS A B S I   

( : ) ( || )AB A BI A B S    

 For a bipartite state 

etc.

etc.

:AB



Min- and Max- Relative Entropies satisfy the:

(1) Strong Subadditivity Property
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(2) Subadditivity Property
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(Q) What are the operational significances of the 
min- and max- relative  entropies in 

Quantum Information Theory? 



A class of important problems 

the evaluation of:

 data compression, 
 transmission of information through a channel
 entanglement manipulation etc.

Initially evaluated in the

under the following assumptions:

 information sources & channels were memoryless
 they were used an infinite number of times (asymptotic limit)

 Optimal rates -- entropic quantities

obtainable from the  relative entropy
parent quantity

“asymptotic, memoryless setting”

optimal rates of info-processing tasks



 optimal rate of data compression:

: the minimum number of qubits needed to 

store (compress) info emitted per use of a 

quantum info source : reliably



 ,   H
signals (pure states)

with probabilities

 Then source characterized by:

Hilbert space

density matrix
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Quantum Data Compression

Quantum Info source signals

 ,i ip 



To evaluate data compression limit : 
Consider a sequence

If the quantum info source is memoryless

 ,n n n
 H

;n
 nH H n

n  ( ) B H
e.g. A memoryless quantum info source emitting qubits

 Consider       successive uses of the source ;       qubits emitted

 Stored in           qubits

rate of data compression = nm
n

n n
nm ;  nm n (data compression)
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of the source

 WHAT IF : :n
state of a quantum spin system 

(     interacting spins)n
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Asymptotic, Memoryless Setting
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not memoryless !



Quantum channel
information

Transmission of information through a quantum channel

 Optical fibre : through which  polarized photons are 
transmitted 

mobile particles which carry the info

 A quantum spin chain – governed by a suitable Hamiltonian

 info carriers (spin-1/2 particles) not mobile

 instead the dynamical properties of the spin 
chain are exploited to transmit info

Examples:
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[Christandl, ND, 
Ekert, Landahl]

Perfect transfer of state through a 
quantum spin chain



Alice Bob

Quantum channel
information

noisy!
distorted

information
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 Let            :        successive uses of a quantum channel

no correlation in the noise affecting 
states  transmitted through successive uses
of the channel:

memoryless if:

the max. amount of info that can be
reliably transmitted per use of the channel

Transmission of information through a quantum channel

( ) 0n
e n

p



Optimal rate/capacity :



Alice Bob
info

 Input states:

-- product states

-- entangled states
or

 Measurements:

 individual

 collective

Additional resource:

e.g. shared entanglement

( )
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n
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( )n
uses of a 

noisy channel

 Information: --- classical or quantum

E D

encoding

input output

decoding

( )n ( )n

 These  capacities evaluated in : asymptotic, memoryless setting

 Parent quantity = quantum relative entropy



In real-world applications “asymptotic memoryless setting”

 In practice: info. sources & channels are used a finite 

number of times; 

 there are unavoidable correlations between successive 

uses (memory effects)

e.g. “Spin chain model for correlated quantum channels”

Rossini et al, New J.Phys. 2008

not necessarily valid



Hence it is important to evaluate optimal rates for 

finite number of uses (or even a single use) 

of an  arbitrary source, channel or entanglement resource

 Corresponding optimal rates: 

optimal one-shot rates



(Q) How can memory effects (effects of correlated noise) arise  
in a single use  (of a source or channel) ?

( )m  

 Hence, one-shot capacity encompasses the capacity of 
a channel for a finite number of its uses!

 scenario of practical interest!

uses of a channel       m 

(A) e.g. for a channel: We could have :

with memory
(finite)



min max( || ),  ( || )S S   Min- & Max relative entropies:

act as parent quantities for one-shot rates of protocols

acts as a parent quantity for asymptotic rates of protocols

Quantum relative entropy: ( || )S  

just as

e.g. Quantum Data Compression

asymptotic rate: 

one-shot rate: 
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[Koenig & Renner]
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 0 < 1 
Optimal rate of one-shot data compression
for a maximum probability of error

smoothed max- entropy

max ( ) ?H  






 [Wang & Renner]  : one-shot  classical capacity
of a quantum channel

Further Examples min ( || )S  

Parent quantity for the following:

 [ND & Buscemi] : one-shot  entanglement cost under LOCC



 [Buscemi & ND] : one-shot  quantum capacity of a 
quantum channel

max ( || )S  

Parent quantity for the following:

 [Buscemi & ND] : one-shot  entanglement distillation

 [ND & Hsieh] : one-shot  entanglement-assisted classical 
capacity of a quantum channel

etc.

(today!)



 One-shot results yield the known results of the 

asymptotic, memoryless case, on taking:

n  and then 0 

 In fact, one-shot results can be looked upon as the 

fundamental  building blocks of Quantum Info. Theory

 One-shot results also take into account effects of 
correlation (or memory) in sources, channels etc.

Why are one-shot results important?

 Hence the one-shot analysis is more general !



Entanglement 
monotones

Min- & Max 
relative 

entropies



 = a measure of how entangled a  state      is ; 
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i.e., the amount of entanglement in the state
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Entanglement monotones

:“minimum distance” of     from the set       of separable states.S

AB  Let

set of all states



 One of the most important and fundamental entanglement 
measures for a bipartite state 

AB 
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Quantum Relative Entropy

Relative Entropy of Entanglement
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Entanglement Monotones

relative entropy of 
entanglement

 We can define two quantities:

Max-relative entropy of 
entanglement

min min( ) : min ( || )E S


  


 S
Min-relative entropy of 

entanglement

these can be proved to be entanglement monotones!



Properties of 
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monotonicity
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(local operations & classical communication)

etc.
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What are the operational significances of                    

min max( ) & ( )?E E 



have interesting operational significances in

entanglement manipulation

 What is entanglement manipulation ?

max ( )E  min ( )E and

= Transformation of entanglement from one form to 

another by local operations & classical communication

(LOCC) :



Entanglement Distillation
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AB

: LOCC

the maximum number of Bell states that 

can be extracted from the state AB
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= “distillable entanglement”

Bell states



Entanglement Dilution

nm
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: LOCC

the minimum number of Bell states needed 
to create the state

Alice Bob

n

n
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m
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 AB
= “entanglement cost”

 Bell states : resource for creating a desired target state

Bell states



have interesting operational significances in

entanglement manipulation

max ( )E  min ( )E and

(separability-preserving maps)

 n “one-shot” scenario

LOCC SEPP maps

( 1)n
when



Separability Preserving (SEPP) Maps

SEPP ( )AB 

 The largest class of CPTP maps which when acting 

on a separable state yields a separable state

 A SEPP map cannot create or increase entanglement

 like a LOCC map !

 If                separable then separableAB



Separability Preserving (SEPP)

 Every LOCC operation is separability preserving

 BUT the converse is not true

 E.g. Consider the map     :

 SWAP is not a local operation

     swap A B B A
AB i i i i i i

i i
p p    

    
 
 

swap
AB 

LOCC
SEPP

SWAP operation

separable state



One-Shot Entanglement Distillation

m

AB

: SEPP

i.e., what is the maximum value of          ?

“one-shot distillable entanglement of           ”

 What is the maximum number of Bell states that can be 
extracted from a single copy of          using SEPP maps?AB

m

AB

Alice Bob
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 min ABE 

 Result :

Min-relative entropy of entanglement

ND &F.Brandao



One-Shot Entanglement Distillation

( ( ), )AB
mF   

AB

: SEPP

Then the maximum value of          

0 

:m

Alice Bob
m 

for some given1  

min ( )ABE 
One-shot 
distillable entanglement

 error



min min
( )

( ) : max ( )
AB

AB AB
B

E E




 
 




 1: :  || |) |(B       

max max( )
: min ( )( )

B
E E

 

 




 where

smoothed min-relative entropy of entanglement

 similarly 

smoothed max-relative entropy of entanglement

(operational significance in entanglement dilution

under  SEPP maps)



Summary
 Introduced 2 new relative entropies

(1) Min-relative entropy & (2) Max-relative entropy

min ( || )S   max ( || )S  ( || )S   

 Parent quantities for optimal one-shot rates for 

 (i) data compression for a quantum info source

(ii) transmission of (a) classical info & (b) quantum info

through a quantum channel

(iii) entanglement manipulation



Entanglement monotones

 min ABE 

 max :ABE 

 Min-relative entropy of entanglement

 Max-relative entropy of entanglement

 Operational interpretations:

 min :ABE 

 max ABE 

One-shot distillable entanglement of

One-shot entanglement cost of

AB

AB
under SEPP

under SEPP



Family Tree of Quantum Protocols

FQSW

mother father

entanglement-assisted 

classical communication

quantum 
communicationnoisy superdense

coding

noisy 
teleportation

entanglement
distillation

asymptotic, memoryless
scenario S( || ) 

parent



Apex of the Family Tree of Quantum Protocols

FQSW

mother father

entanglement-assisted 

classical communication

quantum 
communicationnoisy superdense

coding

noisy 
teleportation

entanglement
distillation

One-shot FQSW

maxS ( || ) 
parent

ND & Hsieh
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