A Lieb-Robinson Bound for the Toda System
Umar Islambekov
The University of Arizona
joint work with Robert Sims

Outline:

1. Motivation
2. Toda Lattice
3. Lieb-Robinson bounds

The Harmonic System

Let Λ be a finite subset of \mathbb{Z}^{d}. The harmonic Hamiltonian $H_{h}^{\wedge}: \mathcal{X}_{\Lambda} \rightarrow \mathbb{R}$ is given by

$$
H_{h}^{\wedge}(\mathrm{x})=\sum_{x \in \Lambda} p_{x}^{2}+\omega^{2} q_{x}^{2}+\sum_{j=1}^{d} \lambda_{j}\left(q_{x}-q_{x+e_{j}}\right)^{2}
$$

where $\mathrm{x}=\left(q_{x}, p_{x}\right)_{x \in \Lambda}$ and $\omega, \lambda_{j} \geq 0$.
For any integer $L \geq 1$ and each subset $\Lambda_{L}=(-L, L]^{d} \subset \mathbb{Z}^{d}$, the flow $\Phi_{t}^{h, L}: \mathcal{X}_{\Lambda_{L}} \rightarrow \mathcal{X}_{\Lambda_{L}}$ corresponding to $H_{h}^{\Lambda_{L}}$ may be explicitly computed.

A Lieb-Robinson Bound for the Harmonic System

The following is a Lieb-Robinson bound for the harmonic system (H. Raz, R. Sims [3]).

Theorem

Let X, Y be finite subsets of \mathbb{Z}^{d} and take L_{0} to be the minimal integer such that $X, Y \subset \Lambda_{L_{0}}$. For any $L \geq L_{0}$, denote by $\alpha_{t}^{h, L}$ the dynamics corresponding to $H_{h}^{\wedge_{L}}$. For any $\mu>0$ and any observables $A, B \in \mathcal{A}_{\Lambda_{L_{0}}}^{(1)}$ with supports in X and Y respectively, there exists positive numbers C and v_{h}, both independent of L, such that the bound
$\left\|\left\{\alpha_{t}^{h, L}(A), B\right\}\right\|_{\infty} \leq C\|A\|_{1, \infty}\|B\|_{1, \infty} \min (|X|,|Y|) e^{-\mu\left(d(X, Y)-v_{h}|t|\right)}$ holds for all $t \in \mathbb{R}$.

General Set-Up

We will consider the Toda system in \mathbb{Z}. To each integer $n \in \mathbb{Z}$, we associate an oscillator with position $q_{n} \in \mathbb{R}$ and momentum $p_{n} \in \mathbb{R}$. The state of the system is described by a sequence $\mathrm{x}=\left\{\left(q_{n}, p_{n}\right)\right\}_{n \in \mathbb{Z}}$, and the phase space is denoted by \mathcal{X}. The (infinite volume) Hamiltonian $H_{T}: \mathcal{X} \rightarrow \mathbb{R} \cup\{\infty\}$ for the Toda lattice is given by

$$
H_{T}(\mathrm{x})=\sum_{n \in \mathbb{Z}} \frac{p_{n}^{2}}{2}+V\left(q_{n+1}-q_{n}\right)
$$

where $V(r)=e^{-r}+r-1$ and $\mathrm{x}=\left\{\left(q_{n}, p_{n}\right)\right\}_{n \in \mathbb{Z}}$.

Hamilton's equations for this system are easy to write down: for each $n \in \mathbb{Z}$,

$$
\dot{q}_{n}(t)=\frac{\partial H_{T}}{\partial p_{n}}(t)=p_{n}(t)
$$

$$
\begin{aligned}
\dot{p}_{n}(t)=-\frac{\partial H_{T}}{\partial q_{n}}(t) & =V^{\prime}\left(q_{n+1}-q_{n}\right)-V^{\prime}\left(q_{n}-q_{n-1}\right) \\
& =e^{-\left(q_{n}(t)-q_{n-1}(t)\right)}-e^{-\left(q_{n+1}(t)-q_{n}(t)\right)} .
\end{aligned}
$$

Change of Variables

A convenient change of variables (commonly referred to as Flaschka variables [1], [2]) is: for each $n \in \mathbb{Z}$ and $t \in \mathbb{R}$, set

$$
a_{n}(t)=\frac{1}{2} e^{-\left(q_{n+1}(t)-q_{n}(t)\right) / 2} \text { and } b_{n}(t)=-\frac{1}{2} p_{n}(t)
$$

The corresponding system of equations of motion are

$$
\begin{align*}
& \dot{a}_{n}(t)=a_{n}(t)\left(b_{n+1}(t)-b_{n}(t)\right) \\
& \dot{b}_{n}(t)=2\left(a_{n}^{2}(t)-a_{n-1}^{2}(t)\right) . \tag{1}
\end{align*}
$$

We will consider the Toda Hamiltonian restricted to the Banach space $M=\ell^{\infty}(\mathbb{Z}) \times \ell^{\infty}(\mathbb{Z})$. Each $\mathrm{x} \in M$ will be written as $\mathrm{x}=\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{Z}}$. The norm on M is given by

$$
\|\mathrm{x}\|_{M}=\max \left(\sup _{n}\left|a_{n}\right|, \sup _{n}\left|b_{n}\right|\right) .
$$

For the Toda system one can prove existence and uniqueness of the global solution on M. This is done in two stages. First one proves local existence of a solution and then extends it globally.

Local Existence

Theorem
If $x_{0}=\left(a_{0}, b_{0}\right) \in M$ then there exist $\delta>0$ and a unique solution $(a(t), b(t))=\left\{\left(a_{n}(t), b_{n}(t)\right)\right\}_{n \in \mathbb{Z}}$ in $C^{\infty}(I, M)$, where $I=(-\delta, \delta)$, of the Toda equations (1) such that $(a(0), b(0))=\left(a_{0}, b_{0}\right)$.

Global Existence

Corresponding to each $\mathrm{x}_{0} \in M$, define the following operators $H(t), P(t): \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z}), t \in I$, by setting

$$
\begin{gathered}
{[H(t) f]_{n}=a_{n}(t) f_{n+1}+a_{n-1}(t) f_{n-1}+b_{n}(t) f_{n},} \\
{[P(t) f]_{n}=a_{n}(t) f_{n+1}-a_{n-1}(t) f_{n-1} .}
\end{gathered}
$$

A short calculation shows that $P(t)$ and $H(t)$ are a Lax-Pair associated to (1), i.e.,

$$
\frac{d}{d t} H(t)=[P(t), H(t)] .
$$

Since $P(t)$ is skew-symmetric, it generates a two-parameter family of unitary propagators $U(t, s)$ [4]. Moreover, the Lax equation implies that

$$
H(t)=U(t, s) H(s) U(t, s)^{*} \quad \forall(t, s) \in I
$$

Hence $\|H(t)\|_{2}=\|H(0)\|_{2}$ and therefore

$$
\max \left(\|a(t)\|_{\infty},\|b(t)\|_{\infty}\right) \leq\|H(t)\|_{2}=\|H(0)\|_{2},
$$

implying that the solution can be globally extended.

Class of observables we consider

We will denote by $\mathcal{A}^{(1)}$ the set of all observables A for which

$$
\|A\|_{1, \infty}=\sup _{n \in \mathbb{Z}} \max \left(\left\|\frac{\partial A}{\partial a_{n}}\right\|_{\infty},\left\|\frac{\partial A}{\partial b_{n}}\right\|_{\infty}\right)
$$

is finite. An observable A is said to be supported in $X \subset \mathbb{Z}$ if the observables $\frac{\partial A}{\partial a_{n}}$ and $\frac{\partial A}{\partial b_{n}}$ are identically zero for all $n \in \mathbb{Z} \backslash X$. The support of an observable A is the minimal set on which A is supported.

We will denote by α_{t} the Toda dynamics, i.e., $\alpha_{t}: \mathcal{A} \rightarrow \mathcal{A}$ defined by setting

$$
\alpha_{t}(A)=A \circ \Phi(t)
$$

where $\Phi(t)$ is the corresponding Toda flow.
If $A \in \mathcal{A}$ and $B \in \mathcal{A}$ are functions of q_{n} 's and p_{n} 's, $n \in \mathbb{Z}$, then the Poisson bracket between them is defined as

$$
\{A, B\}(\mathrm{x})=\sum_{n \in \mathbb{Z}}\left(\frac{\partial A}{\partial q_{n}} \frac{\partial B}{\partial p_{n}}-\frac{\partial A}{\partial p_{n}} \frac{\partial B}{\partial q_{n}}\right)
$$

where $\mathrm{x}=\left\{\left(q_{n}, p_{n}\right)\right\}_{n \in \mathbb{Z}}$. If $A \in \mathcal{A}$ and $B \in \mathcal{A}$ are functions of a_{n} 's and b_{n} 's, $n \in \mathbb{Z}$, then the modified Poisson bracket is

$$
\{A, B\}(\mathrm{x})=\frac{1}{4} \sum_{n \in \mathbb{Z}} a_{n}\left(\frac{\partial A}{\partial a_{n}} \frac{\partial B}{\partial c_{n}}-\frac{\partial A}{\partial c_{n}} \frac{\partial B}{\partial a_{n}}\right)
$$

where $\mathrm{x}=\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{Z}}$ and $\frac{\partial}{\partial c_{n}}=\frac{\partial}{\partial b_{n+1}}-\frac{\partial}{\partial b_{n}}$.

Main Result

The following is a Lieb-Robinson bound for the Toda System.

Theorem

Let $\mathrm{x}_{0}=\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{Z}} \in M$. Then, for every $\mu>0$ there exists a number $v=v\left(\mu, x_{0}\right)$ for which given any observables $A, B \in \mathcal{A}^{(1)}$ with finite supports X and Y respectively, the estimate
$\left|\left\{\alpha_{t}(A), B\right\}\left(\mathrm{x}_{0}\right)\right| \leq\|A\|_{1, \infty}\|B\|_{1, \infty} \sup _{n}\left|a_{n}\right| \sum_{n \in X, m \in Y} e^{-\mu(|n-m|-v|t|)}$
holds for all $t \in \mathbb{R}$. Here

$$
v\left(\mu, \mathrm{x}_{0}\right)=18 c\left(e^{\mu+1}+\frac{1}{\mu}\right)
$$

where $c=c\left(x_{0}\right)=\|H(0)\|_{2}$.

Sketch of the Proof A short calculation shows that

$$
\begin{gathered}
\left|\left\{\alpha_{t}(A), B\right\}\left(\mathrm{x}_{0}\right)\right| \leq\|A\|_{1, \infty}\|B\|_{1, \infty} \sup _{n}\left|a_{n}\right| \\
\times \sum_{n \in X, m \in Y} \frac{1}{2}\left(\left|\frac{\partial a_{n}(t)}{\partial a_{m}}\right|+\left|\frac{\partial b_{n}(t)}{\partial a_{m}}\right|\right) \\
+\frac{1}{4}\left(\left|\frac{\partial a_{n}(t)}{\partial b_{m+1}}\right|+\left|\frac{\partial a_{n}(t)}{\partial b_{m}}\right|+\left|\frac{\partial b_{n}(t)}{\partial b_{m+1}}\right|+\left|\frac{\partial b_{n}(t)}{\partial b_{m}}\right|\right) .
\end{gathered}
$$

Let $\Phi_{n}(t)$ denote the nth component of the flow $\Phi\left(t, \mathrm{x}_{0}\right)$, i.e.,

$$
\Phi_{n}(t)=\binom{a_{n}(t)}{b_{n}(t)} .
$$

Clearly,

$$
\Phi_{n}(t)=\Phi_{n}(0)+\int_{0}^{t}\binom{a_{n}(s)\left(b_{n+1}(s)-b_{n}(s)\right)}{2\left(a_{n}^{2}(s)-a_{n-1}^{2}(s)\right)} d s
$$

Let $\Phi_{n}^{\prime}(t)=\frac{\partial \Phi_{n}(t)}{\partial z}$, where $z \in\left\{a_{m}, b_{m}, b_{m+1}\right\}$. WLOG we take
$z=a_{m}$. Then differentiating the above equality with respect to z

$$
\Phi_{n}^{\prime}(t)=\delta_{m}(n)\binom{1}{0}+\sum_{|e| \leq 1} \int_{0}^{t} D_{n+e}(s) \Phi_{n+e}^{\prime}(s) d s
$$

where
$D_{n+e}(s)=\left(\begin{array}{cc}\left(b_{n+1}(s)-b_{n}(s)\right) \delta_{0}(e) & a_{n}(s)\left(-\delta_{0}(e)+\delta_{1}(e)\right) \\ 4\left(a_{n}(s) \delta_{0}(e)-a_{n-1}(s) \delta_{-1}(e)\right) & 0\end{array}\right)$
For any $v=(x, y) \in \mathbb{R}^{2}$ take $\|v\|=\max (|x|,|y|)$. Then by taking the norm of both sides we get

$$
\left\|\Phi_{n}^{\prime}(t)\right\| \leq \delta_{m}(n)+c_{1} \sum_{|e| \leq 1} \int_{0}^{t}\left\|\Phi_{n+e}^{\prime}(s)\right\| d s
$$

where $c_{1}=6\|H(0)\|_{2}$.

By iterating the above inequality we obtain

$$
\left\|\Phi_{n}^{\prime}(t)\right\| \leq \sum_{k=|n-m|}^{\infty} \frac{\left(3 c_{1}|t|\right)^{k}}{k!}
$$

which implies that for any $\mu>0$

$$
\left\|\Phi_{n}^{\prime}(t)\right\| \leq e^{-\mu(|n-m|-v|t|)}
$$

where $v=v\left(\mu, \mathrm{x}_{0}\right)=18\|H(0)\|_{2}\left(e^{\mu+1}+\frac{1}{\mu}\right)$.

Remark

Similar Lieb-Robinson bounds can be proven in general for the Toda Heirarchy.

Similar Result for Another Class of Observables

Similar Lieb-Robinson bound is valid for another class of observables $\mathcal{A}^{(2)}$, consisting of all observables A and B for which

$$
\|A\|_{2, \infty}=\max \left(\sqrt{\sum_{n}\left\|\frac{\partial A}{\partial a_{n}}\right\|_{\infty}^{2}}, \sqrt{\sum_{n}\left\|\frac{\partial A}{\partial b_{n}}\right\|_{\infty}^{2}}\right)<\infty .
$$

Some Numerics

In this example we consider the Toda system in the finite volume and assume periodic boundary conditions. The number of particles $N=100 . a_{n}(0)=1 / 2 \forall n$ and $b_{n}(0)=0 \forall n \neq 50, b_{50}(0)=1$. The values of $a_{n}(t), 1 \leq n \leq 100$, over the time interval $[0,10]$ are plotted below.

Perturbations of the Toda system

Let $W: \mathbb{R} \rightarrow[0, \infty)$ such that $W \in C^{2}(\mathbb{R})$ and $W^{\prime}, W^{\prime \prime} \in L^{\infty}(\mathbb{R})$.
We define a Hamiltonian $H^{W}: \mathcal{X} \rightarrow \mathbb{R} \cup\{\infty\}$ by setting

$$
H_{T}^{W}(\mathrm{x})=H_{T}(\mathrm{x})+\sum_{n \in \mathbb{Z}} W\left(a_{n}\right)
$$

where $\mathrm{x}=\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{Z}}$. Hence the corresponding system of equations of motion are

$$
\begin{gathered}
\dot{a}_{n}(t)=a_{n}(t)\left(b_{n+1}(t)-b_{n}(t)\right) \\
\dot{b}_{n}(t)=2\left(a_{n}^{2}(t)-a_{n-1}^{2}(t)\right)+R_{n}(t)
\end{gathered}
$$

where

$$
R_{n}(t)=\frac{1}{4}\left(W^{\prime}\left(a_{n}(t)\right) a_{n}(t)-W^{\prime}\left(a_{n-1}(t)\right) a_{n-1}(t)\right)
$$

Local Existence

It is easy to see that there exists a unique local C^{2} solution ($a(t), b(t))$ on $I\left(\mathrm{x}_{0}\right)=(-\delta, \delta)$ of the above Toda equations if the initial condition $\mathrm{x}_{0}=\left(a_{0}, b_{0}\right) \in M$. Let α_{t}^{W} denote the perturbed Toda dynamics, i.e., $\alpha_{t}^{W}: \mathcal{A} \rightarrow \mathcal{A}$ defined by setting

$$
\alpha_{t}^{W}(A)=A \circ \Phi_{t}^{W},
$$

where Φ_{t}^{W} is the corresponding perturbed Toda flow. Define the operators $P(t)$ and $H(t), t \in I\left(\mathrm{x}_{0}\right)$ as before. Let $U(t, s)$ be the family of unitary propagators for $P(t)$. A simple calculation shows that

$$
\frac{d}{d t} H(t)=[P(t), H(t)]+R(t)
$$

where $R(t)$ is a bounded linear operator in $\ell^{2}(\mathbb{Z})$ given by

$$
[R(t) f]_{n}=R_{n}(t) f_{n}
$$

Let $\tilde{H}(t)=U(t, s)^{*} H(t) U(t, s)$. Then $\|\tilde{H}(t)\|_{2}=\|H(t)\|_{2}$ and by the similar earlier calculations we get

$$
\frac{d}{d t} \tilde{H}(t)=U(t, s)^{*} R(t) U(t, s)
$$

Hence

$$
\tilde{H}(t)=\tilde{H}(0)+\int_{0}^{t} U(\tau, s)^{*} R(\tau) U(\tau, s) d \tau
$$

By taking the norm we get

$$
\|H(t)\|_{2} \leq\|H(0)\|_{2}+\frac{1}{2}\left\|W^{\prime}\right\|_{\infty} \int_{0}^{t}\|H(\tau)\|_{2} d \tau
$$

By Gronwall's lemma he have

$$
\|H(t)\|_{2} \leq c_{1} e^{c_{2}|t|}
$$

where $c_{1}=\|H(0)\|_{2}$ and $c_{2}=\frac{1}{2}\left\|W^{\prime}\right\|_{\infty}$, implying the global existence of the solution.

Another Main Result

Theorem

Let $\mathrm{x}_{0}=\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{Z}} \in M$. Then, for every $\mu>0$ and $T>0$ there exists a number $v=v\left(\mu, \mathrm{x}_{0}, W, T\right)$ for which given any observables $A, B \in \mathcal{A}^{(1)}$ with finite supports X and Y respectively, the estimate
$\left|\left\{\alpha_{t}^{W}(A), B\right\}\left(\mathrm{x}_{0}\right)\right| \leq\|A\|_{1, \infty}\|B\|_{1, \infty} \sup _{n}\left|a_{n}\right| \sum_{n \in X, m \in Y} e^{-\mu(|n-m|-v|t|)}$
holds for all $t \in(-T, T)$. Here

$$
v\left(\mu, \mathrm{x}_{0}, W, T\right)=c\left(e^{\mu+1}+\frac{1}{\mu}\right)
$$

where

$$
c=\frac{2\left(\frac{3}{4}\left\|W^{\prime \prime}\right\|_{\infty}+18\right)\|H(0)\|_{2}}{\left\|W^{\prime}\right\|_{\infty}}\left(\frac{e^{\frac{T}{2}\left\|W^{\prime}\right\|_{\infty}-1}}{T}\right)+\frac{3}{2}\left\|W^{\prime}\right\|_{\infty} .
$$

Sketch of the Proof We follow the argument as in the proof of the previous theorem. In fact, keeping similar notation, one gets

$$
\left\|\Phi_{n}^{\prime}(t)\right\| \leq \delta_{m}(n)+\sum_{|e| \leq 1} \int_{0}^{t} f(s)\left\|\Phi_{n+e}^{\prime}(s)\right\| d s
$$

where $f(s)=c_{3}\|H(s)\|_{2}+\frac{1}{2} c_{2}$, with $c_{3}=\frac{1}{4}\left\|W^{\prime \prime}\right\|_{\infty}+6$. Iteration implies that

$$
\begin{align*}
\left\|\Phi_{n}^{\prime}(t)\right\| & \leq \sum_{k=|n-m|}^{\infty} \frac{1}{k!}\left(3 \int_{0}^{t} f(\tau) d \tau\right)^{k} \\
& \leq \sum_{k=|n-m|}^{\infty} \frac{g(t)^{k}}{k!} \leq\left[\frac{g(t)}{|n-m|}\right]^{|n-m|} e^{|n-m|} e^{g(t)} \tag{2}
\end{align*}
$$

where $g(t)=\frac{3 c_{1} c_{3}}{c_{2}}\left(e^{c_{2}|t|}-1\right)+\frac{3}{2} c_{2}|t|$. Given any $\mu>0$. Then as we argued in the previous theorem one can show that

$$
\left\|\Phi_{n}^{\prime}(t)\right\| \leq e^{-\mu\left(|n-m|-c\left(e^{\mu+1}+\frac{1}{\mu}\right)|t|\right)}
$$

where $c=\frac{3 c_{1} c_{3}\left(e^{\delta c_{2}}-1\right)}{\delta c_{2}}+\frac{3}{2} c_{2}$.

Some Numerics

In this example we consider a perturbed Toda system in the finite volume and assume periodic boundary conditions. We take $N=100$ and $W(x)=\frac{1}{2} \cos (2 \pi x) . a_{n}(0)=1 / 2 \forall n$ and $b_{n}(0)=0$ $\forall n \neq 50, b_{50}(0)=1$. The values of $a_{n}(t), 1 \leq n \leq 100$, over the time interval $[0,10]$ are plotted below.

Bibliography

圊 H．Flaschka．The Toda Lattice．I
Phys．Rev．B9，1924－1925（1974）．
围 H．Flaschka．The Toda Lattice．II
Progr．Theoret．Phys．51，703－716（1974）．
R H．Raz，R．Sims．Estimating the Lieb－Robinson Velocity for Classical Anharmonic Lattice Systems J Stat Phys，137：79－108（2009）．

嗇 G．Teschl．Jacobi Operators and Completely Integrable Nonlinear Lattices

Mathematical Surveys and Monographs 72
AMS 2000.
䍰 R．Abraham，J．E．Marsden，and T．Ratiu．Manifolds，Tensor Analysis，and Applications
2nd edition，Springer，New York， 1983.

