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Photosynthesis

Photosynthesis is an amazingly efficient mechanism for
trapping photons, and converting energy into mechanical and
chemical form. It works even with low intensity photon sources,
e.g. hydrothermal vents at depths of 2.5 km!



Green sulfur bacteria

Specialized components in the cell perform photosynthesis.



Photon capture

Photosynthesis division of labor: photon capture and energy
conversion occur in different units. Needs efficient excitation
transfer between molecular units in the cell.



Fenna-Matthews-Olson complex in green sulfur
bacteria

Composed of 7 molecular units: excitation migrates from the
antennae (units 1,6) to the reaction center (unit 3).



Fenna-Matthews-Olson complex

Modeled as array of 7 coupled ‘spins’: mini quantum spin
system! Highly efficient and robust at room temperature with
noisy environment.



Theory

Goals: develop ab initio model for exciton transport across a
system like the FMO complex. Calculate transfer rate and
efficiency. Look for evidence of evolutionary selection via
optimization strategies.

Evaluate possibility of quantum coherence over timescales of
∼ 100′s fs.



Exciton transport: resonant energy transfer

Photon absorption at the antenna produces a localized exciton.
In first approximation, this couples to other units through the
dipole-dipole interaction:

Jj,k = α

[
µj · µk − 3(µj · R̂)(µk · R̂)

]
R3

µj is the electric dipole moment at unit j :

µj = e
∫
ψe(x) xj ψg(x) d x



Exciton transport: resonant energy transfer

The interaction occurs in the near-field region, and can be
described as exchange of a virtual photon:



Basic 2-state model
Each dipole is modeled as a qubit, where the two states
represent the ground and excited states of the unit. The full
state space is

H =
(
C2
)⊗N

The one-exciton subspace CN is invariant under the dynamics,
and the restricted Hamiltonian is H = (Hj,k ) with

Hj,k = Ej δj,k + Jj,k

The dynamics in this subspace is calculated using a master
equation:

dρ
dt

= −i[H, ρ] +
∑

j

Lj(ρ) (1)

where Lj are Lindblad operators representing fluorescent decay
for each system.



Basic 2-state model

Conclusion: on-resonance transfer occurs with inverse
timescale proportional to coupling strength Jj,k .

The 2-state model predicts that coherent transfer occurs at a
rate proportional to the coupling J, and hence

κRET ∼ R−3

This transfer occurs in competition with the fluorescent decay.
Comparing these rates leads to a distance scale for energy
transport, namely

DRET ∼ λ

where λ is the wavelength of the fluorescent photon.

This predicts a length scale of hundreds of nm, which is too
large by several orders of magnitude (compared to
experimental results).



Förster’s theory

By considering an ensemble of donor and acceptor molecules
and using statistical methods, Förster derived the following rate
formula with the inverse sixth power of separation:

κFRET =
1
τD

(
R0

R

)6

Here τD is the fluorescent lifetime of the donor molecule, and
R0 is the FRET distance (for which Förster provided an explicit
formula).

This formula predicts a length scale of approximately 5 ∼ 10
nm, with a sharp falloff due to the inverse sixth power. The
numerical factors are very accurate, and there is excellent
agreement with experiment.



FRET as molecular ruler

FRET is an important tool in protein analysis, where it provides
an accurate way to measure distance: the inverse sixth power
makes it highly sensitive to separation.



Microscopic model for FRET

Excited state sits in a band of closely spaced vibrational and
rotational energy levels. Simplest model: donor exciton couples
to continuous band in the acceptor. The one-exciton subspace
is

H = C⊕ L2(R)

The Hamiltonian is

H =

(
ED VF 〈f |

VF |f 〉 h

)
(2)

where ED is the energy of the donor excited state, f ∈ L2(R) is
the wave packet in the excited band of the acceptor induced by
the dipole-dipole interaction term, VF is the coupling strength,
and h is the one-particle Hamiltonian in the excited band.



Model for FRET



Model for FRET

This is similar to a resonance model, namely a perturbation of
an eigenvalue embedded in continuous spectrum. The
eigenvalue ‘dissolves’ in the continuous spectrum, and for weak
coupling its decay rate is given by Fermi’s Golden Rule. Let
|ψ0〉 be the initial excited state, then

〈ψ0|e−itH |ψ0〉 → 0 (3)

with approximate exponential decay over an intermediate time
scale.

In leading order the rate of decay is 2π|f (ED)|2 σ(ED), where
σ(E) is the density of states at energy E .



Full model

The acceptor: discrete ground state ψA, a band of closely
spaced excited states labelled ψ∗A(ε), and a second discrete
state ψR

A for the acceptor’s state after relaxation.

The donor: initialized in a metastable state ψ∗D, decays to its
ground state ψD, losing energy either through FRET to the
acceptor, or by natural fluorescence via an emitted photon.



The interaction: transition amplitude for FRET between states
ψ∗D, ψA and ψD, ψ

∗
A(ε) is

F (ε) = 〈ψ∗D ψA|VC |ψD ψ
∗
A(ε)〉 ∝ R−3 (4)

Normalized wave packet in excited band:

|f 〉 = V−1
F

∑
ε

F (ε) |ψ∗A(ε)〉

where VF is a normalization factor which indicates the overall
strength of the interaction.



The master equation

dρ
dt

= −i[HD + HA + HF , ρ] + LD(ρ) + LA(ρ) (5)

where HD,HA are the Hamiltonians of the donor and acceptor,
HF is the FRET coupling defined in (4)

HF = VF (|ψD〉〈ψ∗D| ⊗ |f 〉〈ψA|+ |ψ∗D〉〈ψD| ⊗ |ψA〉〈f |)

and LD, LA are Lindblad operators representing the
fluorescence of the donor and relaxation of the acceptor
respectively:

LD(ρ) =
γD

2

(
2JDρJ†D −

{
ρ, J†DJD

})
(6)

LA(ρ) =
∑

ε

γA(ε)

2

(
2JA(ε)ρJA(ε)† −

{
ρ, JA(ε)†JA(ε)

})



γD = rate of donor fluorescence
JD = |ψD〉〈ψ∗D| ⊗ IA = jump operator for the donor’s
fluorescence from |ψ∗D〉 to |ψD〉

γA(ε) = rate of acceptor’s relaxation
JA(ε) = ID ⊗ |ψR

A 〉〈ψ∗A(ε)| = jump operator for acceptor’s
relaxation from |ψ∗A(ε)〉 to |ψR

A 〉

It is assumed here that each energy level |ψ∗A(ε)〉 separately
and incoherently relaxes to |ψR

A 〉, at its own rate γA(ε). The
master equation (5) is a higher-dimensional version of the
well-known amplitude-damping channel which describes
spontaneous photon emission from a 2-state atom.



Efficiency

The FRET efficiency E is defined as the amount of quenching
of the donor’s fluorescence which is produced by the FRET
coupling when the system starts in the initial state |ψ∗D ψA〉:
ρ(0) = |ψ∗D ψA〉〈ψ∗D ψA| and

E = 1− lim
t→∞
〈ψD ψA|ρ(t)|ψD ψA〉 (7)

The FRET distance scale R0 is defined as the largest
separation R for which E is at least 0.5, that is

R0 = sup{R : E ≥ 0.5} (8)



Solution of the master equation
First consider the master equation (5) without the Lindblad
operators. Starting from the initial state |ψ∗D ψA〉, the solution
ρ(t) evolves unitarily in the subspace spanned by the states
|ψ∗D ψA〉, |ψD ψ

∗
A(ε)〉. The solution in this subspace can be

written ρ(t) = ψ(t)ψ(t)† with

ψ(t) =

(
a(t)
φ(t)

)
= e−iB0t

(
a(0)
φ(0)

)
= e−iB0t

(
1
0

)
, (9)

where a(t) is the component in the state |ψ∗D ψA〉, φ(t) is the
component in the subspace spanned by the states |ψD ψ

∗
A(ε)〉,

and

B0 =

(
ED VF 〈f |

VF |f 〉 h

)
(10)

Here ED is the donor’s excited state energy, and h is the
diagonal energy operator acting in the acceptor’s excited band:
(hψ∗A)(ε) = εψ∗A(ε).



Including the Lindblad operators in (5) modifies the operator B0
by the inclusion of non-hermitian diagonal terms, representing
leakage of probability into the states |ψD ψ

R
A 〉 and |ψD ψA〉. The

solution becomes(
a(t)
φ(t)

)
= e−iBt

(
1
0

)
, B =

(
ED − i

2 γD VF 〈f |
VF |f 〉 h − i

2 ΠA

)
(11)

where ΠA =
∑

ε γA(ε) |ψ∗A(ε)〉〈ψ∗A(ε)|.

This is the solution in the subspace spanned by the excited
states |ψ∗D ψA〉, |ψD ψ

∗
A(ε)〉.

The efficiency is

E = 1− γD

∫ ∞
0
|a(s)|2 ds (12)



Exact solutions

With some additional assumptions, the solution can be
computed using resolvent techniques and analytic continuation:

(i) the excited band is continuous, with spectrum extending
from −∞ to +∞ and with constant density of states,
(ii) γA(ε) = γA is constant (decay rate of acceptor into its
relaxed state),
(iii) the normalized FRET wavefunction f is the square root of a
Lorentzian:

f (ε) =

√
γ

π

1
ε− E0 − iγ

(13)

where E0 is the center and γ > 0 is the width of the
wavepacket. [valid for a resonance in weak coupling limit]



Exact solutions
This leads to an exact solution for(

a(t)
φ(t)

)
= e−iBt

(
1
0

)
namely

a(t) =
2∑

j=1

e−ipj t Cj (14)

where p1,p2 are resonances (poles of (z −B)−1
11 ) below the real

axis, and C1,C2 are the residues of these poles. The efficiency
is

E = 1− γD

2∑
j,k=1

Cj Ck
1

i(pj − pk )
(15)



Application: quantum dot and bacteriorhodopsin

Recent proposal for improved dye-sensitized solar cells: a
mixture of Quantum Dots (QD) and the protein
bacteriorhodopsin (bR).



QD and bR
The QD would act as an antenna for photon absorption, with
subsequent transfer to the retinal complex in bR. The retinal
complex in bR is known to be an efficient absorber of photons
through direct capture, and this same efficiency is expected for
non-radiative transfer of excitons from QD to bR via the FRET
mechanism.



QD and bR

The quantum dot has a band gap of approximately 2 eV. The
FRET coupling strength VF is determined by the formula

VF =
dQD dbR

4π ε0 εr R3 α (16)

where εr is the permittivity of the medium, R is the separation
between the molecules, dQD,dbR are the dipole moments of the
QD and bR respectively, and the numerical factor α depends on
orientations of dipoles relative to the separation between
molecules. In atomic units this gives

VF =
15.479

R3 (17)



QD and bR
Figure 2 (a) shows the efficiency as a function of R for these
values, with varying widths for the Lorentzian wave function.



QD-bR

The FRET distance R0 is estimated to be about 7− 8 nm. The
curve almost exactly matches the phenomenological formula
for efficiency

E =
R6

0

R6
0 + R6

Fermi’s Golden Rule predicts a FRET rate 2πV 2
F |f (ED)|2, and

this agrees to within 0.5% with Förster’s formula γD (R0/R)6.
These results are robust against changes in γ (width of the
Lorentzian)

Figure 2 (b) shows the occupation probability of the initial donor
excited state as a function of time, for the same parameter
values and with a separation R = 2 nm. Coherent oscillations
are apparent when γ = 0.05 eV.



Conclusions and directions

Robust microscopic model for FRET between pairs of
molecules.

Extend to a network with multi-hops, and include effects of the
environment.

Develop model for FRET from molecule to metallic substrate:
important for application to solar cell.

Is efficiency of photosynthesis solely due to exquisitely fine
tuning? or is something else going on, for example does
quantum coherence play a role??


