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The challenge...

‘‘Find a minimal set of assumptions under which gapped

Hamiltonians are stable against local perturbations.’’

-Schrödinger’s cat.
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Isn’t every gapped system stable?
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Counterexample to stability: Opening the gap.

Splitting the groundstate subspace.

Example

Consider 2-D (N × N) Ising Hamiltonian and its perturbation:

HN =
∑
|i−j|=1

11− σz
i ⊗ σz

j

2
, H ′N = HN −

1

N2

N2∑
i=1

σz
i .

HN has degenerate g.s. subspace spanned by |000 · · · 0〉 and |111 · · · 1〉,
with spectral gap γN = 1, for all N ≥ 2. H ′N has unique g.s. |000 · · · 0〉,
with |111 · · · 1〉 now excited.
Bad quantum memory! The state |+〉 = |000 . . . 0〉+ |111 . . . 1〉 flips to
|−〉 = |000 . . . 0〉 − |111 . . . 1〉 in time t ∼ π/2, since
e itH′N |+〉 = e−it |000 . . . 0〉+ e it |111 . . . 1〉.
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Counterexample to stability: Closing the gap.

Low energy locally, but high energy globally.

Example

Consider a 2-D (N × N) Ising Hamiltonian with a defect at the origin:

HN =
11− σz

0

2
+
∑
|i−j|=1

11− σz
i ⊗ σz

j

2
.

HN has unique, frustration-free groundstate |000 · · · 0〉, with spectral
gap γN = 1, for all N ≥ 2. State |111 · · · 1〉 has same energy as
groundstate everywhere, but at the origin. Close the gap by applying
local operators everywhere, lowering the energy of |111 . . . 1〉, relative to
|000 . . . 0〉. Use local order parameter, such as σz

i , as the perturbing
term at each site.
H ′N = HN + 1

2N2

∑N2

i=1 σ
z
i has degenerate g.s. |000 · · · 0〉 and |111 · · · 1〉.
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Distinguishability implies instability!

Hamiltonians are unstable because local order parameters can act as
perturbations to open the gap between ground-states, or close the gap

between ground-states and excited states with low-energy, locally.
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Projections onto local, low-energy eigenstates.

Definition
For Λ the periodic lattice [−L, L]d , let H0 =

∑
u∈Λ Qu, with each Qu

supported on b1(u), u ∈ Λ. Denote the groundstate projector by P0

and define for B = br (u), r ≤ L, u ∈ Λ, the projection PB onto
eigenstates of HB =

∑
b1(u)∈B Qu with energy at most Tr(HBP0).
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Stability needs...

Local Topological Quantum Order.

Local-TQO: For A = br(u), r ≤ L∗ ∼ Lα, α ∈ (0, 1], let OA be an
operator with support on A and define A(`) := br+`(u).
Then, H0 has Local-TQO, if there exists a rapidly-
decaying function ∆0(`), such that:

‖PA(`)OAPA(`) − c`(OA)PA(`)‖ ≤ ‖OA‖∆0(`), (1)

for c`(OA) = Tr(OA PA(`))/TrPA(`).

Note:The above condition implies that reduced density matrices
to region A of states in PA(`) are identical up to error ∆0(`).
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Frustration-free Hamiltonians.

Definition
We say H0 =

∑
u∈Λ Qu has a frustration-free ground-state subspace P0,

if QuP0 = λuP0, where λu is the smallest eigenvalue of Qu.
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History of progress...

1 (Euclid, 314 B.C.) Let H0 have spectral gap γ > 0 and unique
groundstate. Then, H0 + V retains a gap if ‖V ‖ < γ/2.

2 (Datta, et al. ’95, Yarotzky, ’00) Let H0 be sum of classical terms,
with gap γ and unique groundstate. Then, for V =

∑
u Vu, with

exponentially decaying Vu, ∃J0 : ‖Vu‖ ≤ J0 =⇒ stable gap.

3 (Bravyi, Hastings, M., ’10) H0 is sum of commuting projections,
with spectral gap γ and frustration-free groundstate subspace,
satisfying a form of Local Topological Order. Then, for V a sum
of rapidly decaying terms Vu, there exists a J0 such that for
‖Vu‖ ≤ J0 =⇒ stable gap.

4 (M., Pytel, ’11) Let H0 have gap γ and frustration-free
groundstate subspace, satisfying Local Topological Order. Then,
stability holds for all perturbations V , as above. This talk.
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Decaying perturbations...

For each site u ∈ Λ, we allow perturbations supported on br (u). As the radius

of the support increases, the norm of the perturbation decreases rapidly.
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The Perturbations: Local decomposition and strength.

Definition
We say that V has strength J and rapid decay f , if we can write

V =
∑
u∈Λ

Vu, Vu :=
∑
r≥0

Vu(r),

such that Vr (u) has support on br (u) and ‖Vr (u)‖ ≤ J f (r), r ≥ 0.
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Frustration-free Hamiltonians are stable!

The spectral gap behaves as it should...

For a very general class of perturbations, frustration-free

Hamiltonians with local topological order maintain a

spectral gap even when the strength of each local

perturbation increases to a constant independent of

the system size!
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Local Gaps.

Definition

Local-Gap: We say that H0 is locally gapped w.r.t. a function
γ(r), if HB ≥ γ(r)(1− PB), where B = br (u).

Open Problem: Is this condition always satisfied with γ(r) decaying at
most polynomially, if H0 is a sum of projections with
frustration-free groundstate?

Open Problem 2: Is this condition really necessary?
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The main result.

Theorem

Let H0 be a frustration-free Hamiltonian satisfying Local-TQO
and Local-Gap with decay given by ∆0(r) and γ(r), respectively.

Assume periodic-boundary conditions and a spectral gap γ > 0.

Let V be a strength J perturbation, with decay given by f (r).

Then, H0 + V has spectral gap bounded below by

(1− c0J)γ − c1 J Ld
√

∆0(L∗),

where

c0 =
L∑

r=1

rd · w(r)

γ(r)

and w(r) =
∑L∗

s=r s f1(s/4) + ‖f1‖1

∑L∗

s=r

√
∆0(s/2). The function

f1 is obtained from decay properties of f (Lieb-Robinson bounds).
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Overview of the proof...

The 4 main steps.

Using the spectral flow, unitarily transform the gapped family of
Hamiltonians H0 + sV into U†(s)(H0 + sV )U(s) = H0 + V ′, so that
[V ′,P0] = 0. Write V ′ = W + ∆ + Tr(P0V ′)11, where ∆ = P0V ′P0

and W = (1− P0)V ′(1− P0). (global block-diagonality)

Using Local-TQO, prove that ‖∆‖ << 1, as L→∞ and show that
W is a strength J perturbation, with rapid decay w(r), satisfying
Wu(r)Pbr (u) = 0. (error-correction)

Combining the local-gap condition and error-correction we prove
that | 〈ψ|W |ψ〉 | ≤ c0 · J 〈ψ|H0 |ψ〉, for arbitrary states ψ. (relative
boundedness of W w.r.t. H0)

Relative boundedness implies that H0 + W + ∆, has a spectral
gap, which is equivalent to the stability of the spectrum of H0 + V .
(unitary invariance + global energy shift)
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The Bravyi-Hastings bootstrapping argument.
Proof of Stability from Relative Bound.

Assume that s∗ < 1 is the largest s, such that H0 + sV maintains a
gap at least γ/2, for 0 ≤ s ≤ s∗ (γ is spectral gap of H0).

Then, the spectral flow U(s) satisfies U(s)P0U†(s) = P0(s).

If P0(s) |Ψ0(s)〉 = |Ψ0(s)〉 is an eigenvector of H0 + sV with
eigenvalue E0(s), then |Ψ0(s)〉 = U(s) |Ψ0〉 , where P0 |Ψ0〉 = |Ψ0〉.
We have: U†(s)(H0 + sV − E · 11)U(s) |Ψ0〉 =
U†(s)(H0 + sV − E · 11) |Ψ0(s)〉 = (E0(s)− E ) |Ψ0〉. Recalling that
H0 + W + ∆ = U†(s)(H0 + sV − E · 11)U(s), with W P0 = 0, we
also have:

(H0 + W + ∆) |Ψ0〉 = ∆ |Ψ0〉 = (E0(s)− E ) |Ψ0〉 .

Hence, |E0(s)− E | ≤ ‖∆‖ << 1 as the size of our lattice increases,
which implies that all groundstates of H0 + W + ∆ have energy at
most ‖∆‖ and span P0.
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Proof of Stability from Relative Bound.

Consider any state |ψ1〉 orthogonal to P0. Obviously, U(s) |ψ1〉 will
be orthogonal to P0(s) = U(s)P0(0)U†(s), the ground state
subspace of H0 + sV − E · 11.

What is the energy of |ψ1〉 in H0 + W + ∆? Here is a lower bound:

〈ψ1|H0 + W + ∆ |ψ1〉 ≥
〈ψ1|H0 |ψ1〉 − | 〈ψ1|W |ψ1〉 | − | 〈ψ1|∆ |ψ1〉 |
≥ (1− c0 J)γ − ‖∆‖.

Hence, the gap of H0 + sV is at least (1− c0 J)γ − 2‖∆‖.
Choosing J small enough, gap is made larger than γ/2! But, for
s∗ + ε, the gap is smaller than γ/2. The contradiction must be that
we assumed s∗ < 1, for given strength J ≤ J0 ∼ 1/c0. So, s∗ = 1.
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Consider any state |ψ1〉 orthogonal to P0. Obviously, U(s) |ψ1〉 will
be orthogonal to P0(s) = U(s)P0(0)U†(s), the ground state
subspace of H0 + sV − E · 11.

What is the energy of |ψ1〉 in H0 + W + ∆? Here is a lower bound:

〈ψ1|H0 + W + ∆ |ψ1〉 ≥
〈ψ1|H0 |ψ1〉 − | 〈ψ1|W |ψ1〉 | − | 〈ψ1|∆ |ψ1〉 |
≥ (1− c0 J)γ − ‖∆‖.

Hence, the gap of H0 + sV is at least (1− c0 J)γ − 2‖∆‖.

Choosing J small enough, gap is made larger than γ/2! But, for
s∗ + ε, the gap is smaller than γ/2. The contradiction must be that
we assumed s∗ < 1, for given strength J ≤ J0 ∼ 1/c0. So, s∗ = 1.
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The end.

Thank you!
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Generators of quasi-adiabatic evolution (Hastings)

Definition
For Hs = H0 + sV , define the quasi-adiabatic evolution generator Ds by:

Ds ≡
∫ ∞
−∞

sγ(t)

(∫ t

0

e iuHs (V )e−iuHsdu

)
dt, (2)

where the function sγ(t) (called a filter function) is chosen to satisfy
the following properties:

1 First, the Fourier transform of sγ(t), which we denote s̃γ(ω), obeys

|ω| ≥ γ/2 → s̃γ(ω) = 0 (compact support). (3)

2 Second, sγ(t) decays like exp{− γ|t|
4 log2 γ|t|} (sub-exponential decay).

3 Third, sγ(t) ≥ 0, so that Ds is Hermitian.

4 Note: This magical function sγ(t) exists and can be quite the
ice-breaker on a first date.
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Quasi-adiabatic evolution

Definition
Define a unitary operator Us by

(∂s′Us′)s′=s ≡ iDs Us , U0 = 11. (4)

Lemma
Let Hs be a differentiable family of Hamiltonians.
Let P(s) denote the projection onto the eigenstates of Hs with energies
in [Emin(s),Emax(s)], where these energies are continuous functions of s.
Assume that all eigenvalues of Hs are either in the interval
[Emin(s),Emax(s)], or are separated by at least γ/2 from this interval.
Then, for all s with 0 ≤ s ≤ 1, we have

P(s) = UsP(0)U†s . (5)
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