The question		

Towards stability of gapped quantum systems.

Spyridon Michalakis

Joint work with Justyna Pytel - Torun, Poland.

May 19th, 2011 Harvard University.

The question		

The challenge...

"Find a minimal set of assumptions under which gapped Hamiltonians are stable against local perturbations."

-Schrödinger's cat.

The motivation		

Isn't every gapped system stable?

Counterexample to stability: Opening the gap.

Splitting the groundstate subspace.

Example

Consider 2-D $(N \times N)$ Ising Hamiltonian and its perturbation:

$$H_N = \sum_{|i-j|=1} \frac{1-\sigma_i^z \otimes \sigma_j^z}{2}, \quad H'_N = H_N - \frac{1}{N^2} \sum_{i=1}^{N^2} \sigma_i^z.$$

 H_N has degenerate g.s. subspace spanned by $|000\cdots0\rangle$ and $|111\cdots1\rangle$, with spectral gap $\gamma_N = 1$, for all $N \ge 2$. H'_N has unique g.s. $|000\cdots0\rangle$, with $|111\cdots1\rangle$ now excited.

Bad quantum memory! The state $|+\rangle = |000...0\rangle + |111...1\rangle$ flips to $|-\rangle = |000...0\rangle - |111...1\rangle$ in time $t \sim \pi/2$, since $e^{itH'_N} |+\rangle = e^{-it} |000...0\rangle + e^{it} |111...1\rangle$.

Counterexample to stability: Closing the gap.

Low energy locally, but high energy globally.

Example

Consider a 2-D ($N \times N$) Ising Hamiltonian with a defect at the origin:

$$H_N = \frac{\mathbf{1} - \sigma_0^z}{2} + \sum_{|i-j|=1} \frac{\mathbf{1} - \sigma_i^z \otimes \sigma_j^z}{2}$$

 H_N has **unique**, **frustration-free** groundstate $|000\cdots0\rangle$, with spectral gap $\gamma_N = 1$, for all $N \ge 2$. State $|111\cdots1\rangle$ has same energy as groundstate everywhere, but at the origin. **Close the gap** by applying local operators everywhere, lowering the energy of $|111\ldots1\rangle$, relative to $|000\ldots0\rangle$. Use **local order parameter**, such as σ_i^z , as the perturbing term at each site.

term at each site. $H'_N = H_N + \frac{1}{2N^2} \sum_{i=1}^{N^2} \sigma_i^z$ has degenerate g.s. $|000\cdots0\rangle$ and $|111\cdots1\rangle$.

Distinguishability implies instability!

Hamiltonians are **unstable** because local order parameters can act as perturbations to open the gap between ground-states, or close the gap between ground-states and excited states with low-energy, locally.

Projections onto local, low-energy eigenstates.

Definition

For Λ the periodic lattice $[-L, L]^d$, let $\mathbf{H}_0 = \sum_{\mathbf{u} \in \Lambda} \mathbf{Q}_{\mathbf{u}}$, with each Q_u supported on $b_1(u)$, $u \in \Lambda$. Denote the groundstate projector by P_0 and define for $B = b_r(u)$, $r \leq L$, $u \in \Lambda$, the projection P_B onto eigenstates of $H_B = \sum_{b_1(u) \in B} Q_u$ with energy at most $\operatorname{Tr}(H_B P_0)$.

	The motivation		
Stability	needs		

Local Topological Quantum Order.

Local-TQO: For $\mathbf{A} = \mathbf{b}_{\mathbf{r}}(\mathbf{u}), r \leq L^* \sim L^{\alpha}, \alpha \in (0, 1]$, let O_A be an operator with support on A and define $\mathbf{A}(\ell) := \mathbf{b}_{\mathbf{r}+\ell}(\mathbf{u})$. Then, \mathbf{H}_0 has Local-TQO, if there exists a rapidly-decaying function $\Delta_0(\ell)$, such that: $\|P_{A(\ell)}O_AP_{A(\ell)} - c_\ell(O_A)P_{A(\ell)}\| \leq \|O_A\| \Delta_0(\ell)$, (1) for $c_\ell(O_A) = \operatorname{Tr}(O_A P_{A(\ell)})/\operatorname{Tr} P_{A(\ell)}$. Note:The above condition implies that reduced density matrices to region A of states in $P_{A(\ell)}$ are identical up to error $\Delta_0(\ell)$.

Frustration-free Hamiltonians.

Definition We say $\mathbf{H}_0 = \sum_{\mathbf{u} \in \mathbf{\Lambda}} \mathbf{Q}_{\mathbf{u}}$ has a **frustration-free** ground-state subspace P_0 , if $Q_u P_0 = \lambda_u P_0$, where λ_u is the **smallest eigenvalue** of Q_u .

1 (Euclid, 314 B.C.) Let H_0 have spectral gap $\gamma > 0$ and **unique** groundstate. Then, $H_0 + V$ retains a gap if $||V|| < \gamma/2$.

- (Euclid, 314 B.C.) Let H₀ have spectral gap γ > 0 and unique groundstate. Then, H₀ + V retains a gap if ||V|| < γ/2.
- 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of classical terms, with gap γ and unique groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \implies$ stable gap.

- (Euclid, 314 B.C.) Let H₀ have spectral gap γ > 0 and unique groundstate. Then, H₀ + V retains a gap if ||V|| < γ/2.
- 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of classical terms, with gap γ and unique groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \implies$ stable gap.
- 3 (Bravyi, Hastings, M., '10) H_0 is sum of commuting projections, with spectral gap γ and frustration-free groundstate subspace, satisfying a form of Local Topological Order. Then, for V a sum of rapidly decaying terms V_u , there exists a J_0 such that for $||V_u|| \leq J_0 \implies$ stable gap.

- 1 (Euclid, 314 B.C.) Let H_0 have spectral gap $\gamma > 0$ and **unique**
 - groundstate. Then, $H_0 + V$ retains a gap if $||V|| < \gamma/2$.
 - 2 (Datta, et al. '95, Yarotzky, '00) Let H_0 be sum of classical terms, with gap γ and unique groundstate. Then, for $V = \sum_u V_u$, with exponentially decaying V_u , $\exists J_0 : ||V_u|| \leq J_0 \implies$ stable gap.
 - 3 (Bravyi, Hastings, M., '10) H_0 is sum of commuting projections, with spectral gap γ and frustration-free groundstate subspace, satisfying a form of Local Topological Order. Then, for V a sum of rapidly decaying terms V_u , there exists a J_0 such that for $\|V_u\| \le J_0 \implies$ stable gap.
 - 4 (M., Pytel, '11) Let H₀ have gap γ and frustration-free groundstate subspace, satisfying Local Topological Order. Then, stability holds for all perturbations V, as above. This talk.

Decaying perturbations...

For each site $u \in \Lambda$, we allow perturbations supported on $b_r(u)$. As the radius of the support increases, the norm of the perturbation decreases rapidly.

The Perturbations: Local decomposition and strength.

Definition

We say that V has strength J and rapid decay f, if we can write

$$V = \sum_{u \in \Lambda} V_u, \quad V_u := \sum_{r \ge 0} V_u(r),$$

such that $V_r(u)$ has support on $b_r(u)$ and $||V_r(u)|| \le Jf(r), r \ge 0$.

Frustration-free Hamiltonians are stable!

The spectral gap behaves as it should...

For a very general class of perturbations, frustration-free Hamiltonians with local topological order maintain a spectral gap even when the strength of each local perturbation increases to a constant independent of the system size!

	The theorem	

Local Gaps.

Definition

Local-Gap: We say that \mathbf{H}_0 is **locally gapped** w.r.t. a function $\gamma(r)$, if $\mathbf{H}_{\mathbf{B}} \geq \gamma(\mathbf{r})(\mathbf{1} - \mathbf{P}_{\mathbf{B}})$, where $B = b_r(u)$.

Open Problem: Is this condition always satisfied with $\gamma(r)$ decaying at most polynomially, if H_0 is a sum of projections with frustration-free groundstate?

Open Problem 2: Is this condition really necessary?

		The theorem	
The main	result.		

■ Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.

		The theorem	
The main	result.		

- Let H_0 be a **frustration-free** Hamiltonian satisfying **Local-TQO** and **Local-Gap** with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.

		The theorem	
The mair	n result.		

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a strength J perturbation, with decay given by f(r).

- □ Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a strength J perturbation, with decay given by f(r).
- Then, $H_0 + V$ has spectral gap bounded below by

$$(1-c_0J)\gamma-c_1JL^d\sqrt{\Delta_0(L^*)},$$

where

$$c_0 = \sum_{r=1}^{L} r^d \cdot \frac{w(r)}{\gamma(r)}$$

and $w(r) = \sum_{s=r}^{L^*} s f_1(s/4) + ||f_1||_1 \sum_{s=r}^{L^*} \sqrt{\Delta_0(s/2)}$. The function f_1 is obtained from decay properties of f (Lieb-Robinson bounds).

The 4 main steps.

Using the spectral flow, unitarily transform the gapped family of Hamiltonians $H_0 + sV$ into $U^{\dagger}(s)(H_0 + sV)U(s) = H_0 + V'$, so that $[V', P_0] = 0$. Write $V' = W + \Delta + \operatorname{Tr}(P_0 V')\mathbf{1}$, where $\Delta = P_0 V' P_0$ and $W = (1 - P_0)V'(1 - P_0)$. (global block-diagonality)

Overview of the proof...

The 4 main steps.

- Using the **spectral flow**, unitarily transform the gapped family of Hamiltonians $H_0 + sV$ into $U^{\dagger}(s)(H_0 + sV)U(s) = H_0 + V'$, so that $[V', P_0] = 0$. Write $V' = W + \Delta + \text{Tr}(P_0V')\mathbf{1}$, where $\Delta = P_0V'P_0$ and $W = (1 - P_0)V'(1 - P_0)$. (global block-diagonality)
- □ Using **Local-TQO**, prove that $||\Delta|| << 1$, as $L \to \infty$ and show that W is a strength J perturbation, with rapid decay w(r), satisfying $W_u(r)P_{b_r(u)} = 0$. (error-correction)

Overview of the proof...

The 4 main steps.

- Using the **spectral flow**, unitarily transform the gapped family of Hamiltonians $H_0 + sV$ into $U^{\dagger}(s)(H_0 + sV)U(s) = H_0 + V'$, so that $[V', P_0] = 0$. Write $V' = W + \Delta + \text{Tr}(P_0V')\mathbf{1}$, where $\Delta = P_0V'P_0$ and $W = (1 - P_0)V'(1 - P_0)$. (global block-diagonality)
- Using **Local-TQO**, prove that $||\Delta|| << 1$, as $L \to \infty$ and show that W is a strength J perturbation, with rapid decay w(r), satisfying $W_u(r)P_{b_r(u)} = 0$. (error-correction)
- Combining the **local-gap** condition and **error-correction** we prove that $|\langle \psi | W | \psi \rangle| \leq c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative boundedness of W w.r.t. H_0)

Overview of the proof...

The 4 main steps.

- Using the **spectral flow**, unitarily transform the gapped family of Hamiltonians $H_0 + sV$ into $U^{\dagger}(s)(H_0 + sV)U(s) = H_0 + V'$, so that $[V', P_0] = 0$. Write $V' = W + \Delta + \text{Tr}(P_0V')\mathbf{1}$, where $\Delta = P_0V'P_0$ and $W = (1 - P_0)V'(1 - P_0)$. (global block-diagonality)
- Using **Local-TQO**, prove that $||\Delta|| << 1$, as $L \to \infty$ and show that W is a strength J perturbation, with rapid decay w(r), satisfying $W_u(r)P_{b_r(u)} = 0$. (error-correction)
- Combining the **local-gap** condition and **error-correction** we prove that $|\langle \psi | W | \psi \rangle| \leq c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative boundedness of W w.r.t. H_0)
- Relative boundedness implies that $H_0 + W + \Delta$, has a spectral gap, which is equivalent to the stability of the spectrum of $H_0 + V$. (unitary invariance + global energy shift)

Proof of Stability from Relative Bound.

Assume that $s^* < 1$ is the largest *s*, such that $H_0 + sV$ maintains a gap at least $\gamma/2$, for $0 \le s \le s^*$ (γ is spectral gap of H_0).

Proof of Stability from Relative Bound.

Assume that $s^* < 1$ is the largest *s*, such that $H_0 + sV$ maintains a gap at least $\gamma/2$, for $0 \le s \le s^*$ (γ is spectral gap of H_0).

Then, the spectral flow U(s) satisfies $U(s)P_0U^{\dagger}(s) = P_0(s)$.

Proof of Stability from Relative Bound.

- Assume that $s^* < 1$ is the largest *s*, such that $H_0 + sV$ maintains a gap at least $\gamma/2$, for $0 \le s \le s^*$ (γ is spectral gap of H_0).
- Then, the spectral flow U(s) satisfies $U(s)P_0U^{\dagger}(s) = P_0(s)$.
- □ If $P_0(s) |\Psi_0(s)\rangle = |\Psi_0(s)\rangle$ is an eigenvector of $H_0 + sV$ with eigenvalue $E_0(s)$, then $|\Psi_0(s)\rangle = U(s) |\Psi_0\rangle$, where $P_0 |\Psi_0\rangle = |\Psi_0\rangle$.

Proof of Stability from Relative Bound.

- Assume that $s^* < 1$ is the largest *s*, such that $H_0 + sV$ maintains a gap at least $\gamma/2$, for $0 \le s \le s^*$ (γ is spectral gap of H_0).
- Then, the spectral flow U(s) satisfies $U(s)P_0U^{\dagger}(s) = P_0(s)$.
- □ If $P_0(s) |\Psi_0(s)\rangle = |\Psi_0(s)\rangle$ is an eigenvector of $H_0 + sV$ with eigenvalue $E_0(s)$, then $|\Psi_0(s)\rangle = U(s) |\Psi_0\rangle$, where $P_0 |\Psi_0\rangle = |\Psi_0\rangle$.
- We have: $U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1})U(s) |\Psi_0\rangle = U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1}) |\Psi_0(s)\rangle = (E_0(s) E) |\Psi_0\rangle$. Recalling that $H_0 + W + \Delta = U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1})U(s)$, with $W P_0 = 0$, we also have:

$$\left(H_{0}+W+\Delta
ight)\left|\Psi_{0}
ight
angle=\Delta\left|\Psi_{0}
ight
angle=\left(E_{0}(s)-E
ight)\left|\Psi_{0}
ight
angle.$$

Proof of Stability from Relative Bound.

- Assume that $s^* < 1$ is the largest *s*, such that $H_0 + sV$ maintains a gap at least $\gamma/2$, for $0 \le s \le s^*$ (γ is spectral gap of H_0).
- Then, the spectral flow U(s) satisfies $U(s)P_0U^{\dagger}(s) = P_0(s)$.
- □ If $P_0(s) |\Psi_0(s)\rangle = |\Psi_0(s)\rangle$ is an eigenvector of $H_0 + sV$ with eigenvalue $E_0(s)$, then $|\Psi_0(s)\rangle = U(s) |\Psi_0\rangle$, where $P_0 |\Psi_0\rangle = |\Psi_0\rangle$.
- We have: $U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1})U(s) |\Psi_0\rangle = U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1}) |\Psi_0(s)\rangle = (E_0(s) E) |\Psi_0\rangle$. Recalling that $H_0 + W + \Delta = U^{\dagger}(s)(H_0 + sV E \cdot \mathbf{1})U(s)$, with $W P_0 = 0$, we also have:

$$\left(H_{0}+W+\Delta
ight)\left|\Psi_{0}
ight
angle=\Delta\left|\Psi_{0}
ight
angle=\left(E_{0}(s)-E
ight)\left|\Psi_{0}
ight
angle.$$

Hence, $|E_0(s) - E| \le ||\Delta|| << 1$ as the size of our lattice increases, which implies that all groundstates of $H_0 + W + \Delta$ have energy at most $||\Delta||$ and span P_0 .

Spyridon Michalakis

		I he proof

Proof of Stability from Relative Bound.

Consider any state $|\psi_1\rangle$ orthogonal to P_0 . Obviously, $U(s) |\psi_1\rangle$ will be orthogonal to $P_0(s) = U(s)P_0(0)U^{\dagger}(s)$, the ground state subspace of $H_0 + sV - E \cdot \mathbf{1}$.

The question	The motivation	The answer	I he theorem	The proof

Proof of Stability from Relative Bound.

- Consider any state $|\psi_1\rangle$ orthogonal to P_0 . Obviously, $U(s) |\psi_1\rangle$ will be orthogonal to $P_0(s) = U(s)P_0(0)U^{\dagger}(s)$, the ground state subspace of $H_0 + sV E \cdot \mathbf{1}$.
- What is the energy of $|\psi_1\rangle$ in $H_0 + W + \Delta$? Here is a lower bound:

$$\begin{split} \langle \psi_1 | H_0 + W + \Delta | \psi_1 \rangle \geq \\ \langle \psi_1 | H_0 | \psi_1 \rangle - | \langle \psi_1 | W | \psi_1 \rangle | - | \langle \psi_1 | \Delta | \psi_1 \rangle | \\ \geq (1 - c_0 J) \gamma - \| \Delta \|. \end{split}$$

Hence, the gap of $H_0 + sV$ is at least $(1 - c_0 J)\gamma - 2\|\Delta\|$.

The question	The motivation	I he answer	I he theorem	The proof
				_

Proof of Stability from Relative Bound.

- Consider any state $|\psi_1\rangle$ orthogonal to P_0 . Obviously, $U(s) |\psi_1\rangle$ will be orthogonal to $P_0(s) = U(s)P_0(0)U^{\dagger}(s)$, the ground state subspace of $H_0 + sV E \cdot \mathbf{1}$.
- What is the energy of $|\psi_1\rangle$ in $H_0 + W + \Delta$? Here is a lower bound:

$$\begin{split} \langle \psi_1 | H_0 + W + \Delta | \psi_1 \rangle \geq \\ \langle \psi_1 | H_0 | \psi_1 \rangle - | \langle \psi_1 | W | \psi_1 \rangle | - | \langle \psi_1 | \Delta | \psi_1 \rangle | \\ \geq (1 - c_0 J) \gamma - \| \Delta \|. \end{split}$$

Hence, the gap of $H_0 + sV$ is at least $(1 - c_0 J)\gamma - 2\|\Delta\|$.

Choosing J small enough, gap is made larger than $\gamma/2!$ But, for $s^* + \epsilon$, the gap is smaller than $\gamma/2$. The contradiction must be that we assumed $s^* < 1$, for given strength $J \leq J_0 \sim 1/c_0$. So, $s^* = 1$.

The end.

Thank you!

Spyridon Michalakis Stability of gapped systems 18/ 20

Generators of quasi-adiabatic evolution (Hastings)

Definition

For $H_s = H_0 + sV$, define the quasi-adiabatic evolution generator \mathcal{D}_s by:

$$\mathcal{D}_{s} \equiv \int_{-\infty}^{\infty} s_{\gamma}(t) \left(\int_{0}^{t} e^{iu\mathcal{H}_{s}}(V) e^{-iu\mathcal{H}_{s}} \mathrm{d}u \right) \mathrm{d}t,$$
(2)

where the function $s_{\gamma}(t)$ (called a **filter function**) is chosen to satisfy the following properties:

1 First, the Fourier transform of $s_{\gamma}(t)$, which we denote $\tilde{s}_{\gamma}(\omega)$, obeys

$$|\omega| \geq \gamma/2 \quad o \quad ilde{s}_{\gamma}(\omega) = 0 \quad (ext{compact support}).$$

- 2 Second, $s_{\gamma}(t)$ decays like $\exp\{-\frac{\gamma|t|}{4\log^2 \gamma|t|}\}$ (sub-exponential decay).
- 3 Third, $s_{\gamma}(t) \geq 0$, so that \mathcal{D}_s is Hermitian.
- 4 Note: This magical function $s_{\gamma}(t)$ exists and can be quite the ice-breaker on a first date.

Quasi-adiabatic evolution

Definition Define a unitary operator U_s by

$$\left(\partial_{s'}U_{s'}\right)_{s'=s} \equiv i\mathcal{D}_s U_s, \quad U_0 = \mathbf{1}.$$

Lemma

Let H_s be a differentiable family of Hamiltonians. Let P(s) denote the projection onto the eigenstates of H_s with energies in $[E_{min}(s), E_{max}(s)]$, where these energies are continuous functions of s. Assume that all eigenvalues of H_s are either in the interval $[E_{min}(s), E_{max}(s)]$, or are separated by at least $\gamma/2$ from this interval. Then, for all s with $0 \le s \le 1$, we have

$$P(s) = U_s P(0) U_s^{\dagger}.$$
⁽⁵⁾