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Goals:

Classically thermodynamic formalism ( i.e. pressure, entropy,
variational principle) is intimately linked with large deviations of
macroscopic observables.

Do we have the same connection in quantum systems?

Problems:

• No quantum equivalent of empirical measures.

• Non-commutativity.

• Lack of understanding of basic properties of quantum states
(Even Bulk/boundary estimates !)

• No formulation of proper quantum, non-commutative large
deviations.



Today’s program

1) A quantum version of Laplace-Varadhan Lemma

or more precisely

a variational principle for spin systems with short range and
mean-field interactions (with De Roeck, Maes, Netockny). Pub-
lished in RMP 2010

2) Large deviations in quantum spin systems via Ruelle-Lanford
functions (with Ogata). Published in RMP 2011



Laplace-Varadhan

Suppose the sequence of measures µn satisfies a large deviation
principle, on the scale vn with rate function I(x), i.e.

µn(A) � exp
(
−vn inf

x∈A
I(x)

)
then the Laplace-Varadhan Lemma tells us that for G continuous
and bounded

lim
n→∞

1

vn
log

∫
exp (vnG(x)) dµn(x) = sup

x
{G(x)− I(x)} .



Quantum Lattice Systems

• Lattice Zd, write Λ ⊂ Zd for finite box (cube), and Λ ↗ Zd

means limit taken along a increasing sequence of cubes.

• Hilbert space: At each lattice site there is a finite level quantum
system (a spin) with finite dimensional Hilbert space Hx

∼= CN .

For Λ ⊂ Zd the Hilbert space is HΛ = ⊗x∈ΛHx

• Observable algebras: For a finite volume Λ

OΛ = B(HΛ) = {A : HΛ →HΛ, linear}

and there is a natural inclusion OΛ ⊂ O′Λ for Λ ⊂ Λ′.

The algebra of observable for the infinite system is the C∗-
algebra

O = ∪ΛOΛ



• Interactions and Hamiltonians The interactions between the
spins is specified by the collection

Φ = {φX X ⊂ Zd finite}
where φX = φ∗X describes the multi-body interactions for spins

in X and we will always assume that φX is translation invariant.

Finite-volume Hamiltonians

HΛ =
∑
X⊂Λ

φX free boundary conditions

and one assumes, for example, that

‖Φ‖ =
∑
X∈x

|X|−1‖φX‖ <∞

(i.e., the energy per site is bounded).

For example we can assume finite range interactions, φX = 0 if
diam(X) > R.



The variational principle

Let ω be a translation invariant state for the infinite system ( =
positive normalized linear functional on O) and write ωΛ for the
restriction of ω to OΛ

Facts: The following limits exist

Specific entropy s(ω) = limΛ↗Zd
1
|Λ|S(ωΛ)

Specific energy eΦ(ω) = limΛ↗Zd
1
|Λ|ω(HΛ)

Pressure p(βΦ) = limΛ↗Zd
1
|Λ| logZΛ = limΛ↗Zd

1
|Λ| log tr(e−βHΛ)



Theorem: (Variational Principle) The functional ω 7→ s(ω) −
βe(ω) is upper-semicontinuous and

p(βΦ) = lim
n→∞

1

|Λ|
log tr (exp(−βHΛ)) = sup

ω trans.inv.
{s(ω)− βeΦ(ω)}

Morever we can write

p(βΦ) = sup
e
{s(e)− βe}

where s(e) is the microcaconical entropy

Relation with large deviations and Laplace-Varadhan: −s(e) is
the microcanonical entropy, i.e. the rate function function for

µΛ(A) = tr
(
IA

(
HΛ

|Λ|

))
� exp(|Λ| sup

e∈A
s(e))

(Use this to prove equivalence of micro and macro ensembles!)



Short range and long range interactions

Two interactions Φ and Ψ with Hamiltonians HΛ, KΛ

G a continuous functions on [−‖Ψ‖, ‖Ψ‖]

What is

lim
n→∞

1

|Λ|
log tr

[
exp
(
−βHΛ + |Λ|G

(
KΛ

|Λ|

))]
?

Example: KΛ =
∑

x∈Λ
ψx and G(z) = z2 then

|Λ|G(KΛ) =
1

|Λ|

∑
x,y∈Λ

ψxψy , Mean− field interaction

Pressure for systems with short range and mean field interac-
tions.



In collaboration with De Roeck, Maes, Netockny (see also Hiai,
Mosonyi, Ohno , Petz).

Let g be a continuous function and G is a quantization of g, i.e.,

• G(X,Y ) = G(X,Y )∗ for X = X∗, Y = Y ∗

• G(x, y) = g(x, y) for x, y ∈ R

Theorem For any quantization of G we have

lim
Λ↗Zd

1

|Λ|
log tr

[
exp
(
−βHΛ + |Λ|G

(
KΛ,1

|Λ|
,
KΛ,2

|Λ|

))]
= sup

ω
{g (eΨ1(ω), eΨ2(ω)) + s(ω)− βeΦ(ω)}



We also have the formula

lim
Λ↗Zd

1

|Λ|
log tr

[
exp
(
−βHΛ + |Λ|G

(
KΛ,1

|Λ|
,
KΛ,2

|Λ|

))]
= sup

x1,x2∈R2

{g(x1, x2)− I(x1, x2)}(1)

where

I(x, y) = lim
Λ↗Zd

1

|Λ|
log tr

[
exp(−βHΛ + x1KΛ,1 + x2KΛ,2)

]
Here the connection with large deviations is somewhat lost.

Proof:

• The lower bound use the standard trick + approximation of
any state by ergodic states

• Upper bound: Reduction to a product state on a coarse lattice
+ slight extension of the Petz-Raggio-Verbeure bound.



Open problem: Existence of the specific relative entropy

Variational Principle and Gibbs states

p(βΦ) = sup
ω trans.inv.

{s(ω)− βeΦ(ω)}

A translation invariant state ωβΦ is a (infinite volume) Gibbs
state if

p(βΦ) = s(ω)− βeΦ(ω)

and let us denote by Ω(βΦ) the set of Gibbs states.



Relative entropy

For two states ωΛ and ω′Λ with density matrices σΛ and σ′Λ the
relative entropy of ωΛ with respect to ω′Λ

S(ωΛ|ω′Λ) = tr
(
σΛ

(
logσΛ − logσ′Λ

))
Let ωβΦ be an equilibrium state at temperature β and let ωβΦ

Λ
its restriction to OΛ.

Open Problem: Prove that for any translation invariant state
ω the limit

s(ω |ωβ) = lim
Λ↗Zd

1

|Λ|
S(ωΛ |ωβΦ

Λ )

exists and that

s(ω |ωβ) = −s(ω) + βe(ω) + p(β) .



Equivalent reformulation of the variational principle:

Let ωβΦ be a Gibbs state. Then we have

s(ω |ωβΦ) = 0 iff ω ∈ Ωβ

Not known if the the specific relative entropy s(ω |ωβΦ) exists
for a general quantum Gibbs state ωβΦ!

Known for

• Classical case

• Quantum case, β sufficently small (high-temperature)

• Quantum case, d = 1, finite range interactions.



If ωβΦ
Λ,can is the finite volume Gibbs state (i.e. with free boundary

conditions) then the existence of the limit

lim
Λ↗Zd

1

|Λ|
S(ωΛ |ωβΦ

Λ,can)

is (very easy)

Control the boundary terms!

ωβΦ
Λ,can vs ωβΦ

Λ

Classical : use DLR condition

Quantum : use Araki-Gibbs condition, but...



Asymptotic decoupling property

If ωβΦ ∈ ΩβΦ is a Gibbs state then there exist constants C(Λ)
with

lim
Λ↗Zd

c(Λ)

|Λ|
= 0

such that

e−c(Λ) σβΦ
Λ ≤

e−βHΛ

tr(e−βHΛ)
≤ ec(Λ) σβΦ

Λ

The proof in the classical case is very easy, at high tempera-
ture not too difficult, in dimension 1 quite hard (based on hard
estimates by Araki on the dynamics)

This implies that for A ∈ OΛ, B ∈ OΛC we have

e−c(Λ)ωβΦ(A)ωβΦ(B) ≤ ωβΦ(AB) ≤ ωβΦ(A)ωβΦ(B)ec(Λ)



Ruelle-Lanford functions and large deviations

see Ruelle and Lanford and Lewis, Pfister & Sullivan

Consider a sequence of measures {µn} and a scal vn. For sim-
plicity assume {µn} supported on some compact set of R

Define the set functions

m(B) ≡ lim sup
n

1

vn
logµn(B) m(B) ≡ lim inf

n

1

vn
logµn(B)

and the Ruelle-Lanford functions

s(x) = inf
ε
m(Bε(x)) s(x) = inf

ε
m(Bε(x))



Facts:

• If

s(x) = s(x) ≡ s(x)

then µn satisfy a LDP with rate function I(x) = −s(x)

• By Laplace-Varadhan lemma the moment generating function

e(α) = lim
n

1

vn
logµn (exp(vnαx))

exists. Suppose, in addition, that s(x) is concave then by convex
duality

s(x) = inf
α
{e(α)− αx}



Application to quantum spin systems

Consider the probability measures (with vn = |Λ|)

µΛ(A) = ω(βΦ)
(
IA

(
KΛ

|Λ|

))
with

IA(X) = spectral projection onto the eigenspaces of X corre-
sponding to eigenvalues in A.

ωβΦ a Gibbs measure at inverse temperature β.



Various previous results obtained by Lebowitz-Lenci-Spohn, Gallavotti-
Lebowitz-Mastropietro, Netocny-Redig, Lenci-R.B., Petz-Hiai-
Mosonyi, Ogata, ...

Novelty: (Joint work with Yoshiko Ogata)

• Characterization of the large deviation function in terms of
classical (!) relative entropy

• Proof of large deviation theorems done in ”Ruelle-Lanford’s
spirits”, i.e. use only subadditivity arguments, so no cluster
expansion, transfer operators, etc... As a result proofs are very
short and fairly straightforward.



Classical Observables

Assume

• The state ω = ω(βΦ) is asymptotically decoupled quantum or
classical Gibbs state.

• The observable KΛ is a classical observable e.g.

KΛ =
∑
x∈Λ

Ψx , one− site observables

or

KΛ = energy for a classical spin systems

In both cases there exists a classical subalgebra O(cl) such that
ψX ∈ O(cl) for all X.



Theorem: The family of measures µn(A) = ω(βΦ)
(
IA
(

1
|Λ(n)|KΛ(n)

))
satisfies a large deviation principle with a convex rate function
−s(x) with

s(x) = inf
α
{e(α)− αx}

where

e(α) = lim
n→∞

1

|Λ(n)|
logω(βΦ)(exp(αKΛ(n))) . (Relative pressure)

This is not the translated pressure P (βΦ− αΨ).

Moreover we have

s(x) = sup
{
−scl(ν|ω|(cl)O ) ; ν state on O(cl) , ν(AΨ) = x

}
This rate function is expressed using the classical relative entropy
hcl, in particular

s(x) 6= sup {−s (ν|ω) ; ν state on O , ν(AΨ) = x}



Dimension 1

Assume

• ωβΦ is a Gibbs state for a finite range interaction Φ

• The observable KΛ is a macroscopic observable for a finite-
range interaction Ψ.

Theorem:

ωβΦ
(
IA

(
KΛ

|Λ|

))
� e−|Λ| infx∈A I(x)

with

I(x) = inf
{
sΨ(ω |ωβΦ) , eψ(ω) = x) ,

}
with

sΨ(ω |ω′) = lim
|Λ|↗Zd

1

|Λ|
S(ωΛ|OΛ,Ψ |ω′Λ|OΛ,Ψ)

and OΛ,ψ is the classical subalgebra generated by KΛ.



Basic idea to prove the existence of a concave Ruelle-Lanford
function.

Pick x, x1, x2 such that x = 1
2
x1 + 1

2
x2 arbitary.

Pick ε > ε′ arbitrary.

Show that

m(Bε(x)) ≥
1

2
(m(Bε′(x1)) +m(Bε′(x2)))

Take a cube Λ of side length n = kl and write

KΛ =

kd∑
j=1

KCj +W

where the Cj are disjoint cubes of sidelength l and W is the
interaction energy between the Cj’s.



Main problem: Control the projections the difference between
the projections

IBε(x)(KΛ) and IBε′(x)(
∑
j

KCj)

Proposition: Assume d = 1, then for any ε > ε′ and any α > 0

lim sup
Λ↗Z

1

|Λ|
log

∥∥∥∥∥IBε(x)(KΛ)IBε′(x)C(
∑
j

KCj)

∥∥∥∥∥ ≤ −α(ε− ε′)



Related problems

(1) Show the existence of the specific relative entropy. For
translation invariant ω the limit

s(ω |ωβΦ) = lim
Λ↗Zd

1

|Λ|
S(ωΛ |ωβΦ

Λ )

exist.

(2) Consider two families of Hamiltonians HΛ and KΛ. Prove
the existence of the limit

lim
Λ↗Zd

1

|Λ|
log tr

(
eHΛeKΛ

)
Also useful in quantum information theory (Hypothesis test-
ing:Chernoff and Hoefding bounds)

(3) Obtain bounds on imaginary time-evolution

eizHΛAe−izHΛ

uniformly in |Λ|. In 1-dimension it is an entire-analytic function
(Araki) for local A and Λ↗ Zd.


