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Introduction
● What is the structure of gapped one-dimensional quantum phases?
● Is the AKLT phase different from e.g. a dimerized system, 

or a trivial (product) phase? (And if yes, in which sense?)
● Is there an analogy to topological protection in one dimension?

● Structure of the talk:
- what are Matrix Product States (MPS)
- what do I mean by “phases”
- phases in the MPS formalism
- standard form of MPS for classification of phases
- classification of gapped phases
- classification of phases under symmetries

● This talk:

Classification of gapped 1D phases in the Matrix Product state formalism



  

The area law

● local Hamiltonian
→ can we characterize the ground state         ?

● Problem: exponentially large Hilbert space!
● However:                    has relatively few parameters

    lives in small corner of Hilbert space

● Guideline for suitable ansatz states?
● Area law for ground states:

[Hastings, JSTAT '07]

● entanglement located around the boundary



  

Matrix Product States
● Local description of many-body states with area law?

“Matrix Product States” (MPS)

● system with entropic area law  ⇔  well described by MPS
[Verstraete & Cirac, PRB '06; Hastings, JSTAT '07; Schuch et al., PRL '08]

● describe ground/thermal states of local Hamiltonians efficiently
[Hastings, PRB '06, PRB '07, JSTAT '07]

● toolbox for exactly solvable models:
- MPS are exact ground states of local Hamiltonians
- many properties can be computed analytically 



  

The AKLT state, and parent Hamiltonians

    : projector onto           subspace

[Affleck, Kennedy, Lieb & Tasaki, PRL '87]● Example: AKLT state
subspace has spin 

non-existent

● Hamiltonian: , with

●    is unique ground state of    , and      has a spectral gap

● Every MPS has an associated parent Hamiltonian with
- unique ground state or fixed degeneracy
- spectral gap [Fannes, Nachtergaele, Werner, CMP '92; Nachtergaele, CMP '96]



  

Framework for classification of phases
● we will study systems with exact MPS ground states
● same phase ↔ we can interpolate without phase transition

●      are in same phase

iff there exists   s.th.

- continous and bounded
- is uniformly gapped in     and 

● we allow blocking 
of a constant number of sites

● we allow for ancillas

● extension: what if we impose symmetries ?



  

Classification using MPS
● state ↔ Hamiltonian duality: perform classification for states

● simplify interpolation using normal form
- first interpolate to normal form (well-conditioned)
- then interpolate between normal forms (simple structure)

→ need to ensure continuity and gappedness!
● construct interpolating path       from      to 

OK



  

The isometric form
isometry

● Hamiltonians uniformly gapped

● classification reduces to isometric form
● path commutes with symmetry

isometric form

● continuous path of Hamiltonians

follows from [Fannes, Nachtergaele, Werner, CMP '92;
Nachtergaele, CMP '96]

● path of states 

polar decomposition
isometry



  

Classification – unique ground states
● systems with unique ground state:

    injective
(bijective)

 unitary

● isometric form (up to basis choice):

● interpolation between different      and      :

isometric
form

→ characterized only by 

⇒ all states in the same phase



  

Classification – degenerate ground states
● systems with    -fold degenerate ground state

→ isometric form (up to basis choice):

● interpolation between different        and      :

⇒ all systems with same ground state degeneracy     in the same phase

→ commuting, since       “classical”
(locally broken symmetry!)



  

Classification of phases without symmetries

● Classification of Hamiltonians with MPS ground states
●              in same phase ↔ smooth gapped path       exists

Systems with same ground state 
degeneracy       are in the same phase. 

Different degeneracies label different phases.

- construct path of states → induces path 
- isometric form  is in same phase
- classify phases for isometric forms
- isometric form ⇒ commuting parent Hamiltonian ⇒ simple class.

- MPS ↔ parent Hamiltonian duality
● Proof steps:



  

Phases under symmetries

● Phases under symmetries:
Impose constraint
on interpolating path

●    : unitary representation of symmetry group    , 
   [e.g.      ]

● Different representations      (e.g. spin-0 and spin-1   ):

→ require invariance of   under 

● symmetry of  ⇔ symmetry of corresponding MPS 

(maybe with some phases … )



  

MPS and symmetries
● How is symmetry         reflected in ?

=

● Restrict to injective MPS:

● transformation to isometric form
keeps symmetry

● symmetry action in isometric form:

in some fixed basis

● impose symmetry via        :
⇒ basis choice unambiguous



  

Projective representations
● What is the structure of ?

projective representation
⇒

●   only defined up to phase    :

equivalence classes

→ equivalence classes form group: 2nd cohomology group 

● will show: Equivalence class of     determines phase!

Example 1: Example 2:
spin-    repres. of   :

[cf. Pollmann et al., PRB '10;
 Chen, Gu, Wen, PRB '11]



  

Interpolation with same cohomology class
● Interpolate from            to 

● Interpolate along path w/ symmetry      , where

with interpolating path 

● key point:      is still projective representation:

● Note: interpolation is in too big space: instead of
, but this can be fixed (using ancillas or blocking)

[cf. Chen, Gu, Wen, PRB '11]



  

Separation of phases
● What if       and       belong to different equivalence classes?

● problem:      is not a representation:

● how to prove impossibility of interpolation?

equivalence class of     cannot change!

smooth & gapped smooth smooth

 smooth(up to phase) smooth



  

Degenerate systems: Phases under symmetries

● Action of symmetry on virtual level:
● What if system has degenerate ground state?

permutes different ground state sectors  

induced representation from projective representation
of the subgroup 

● In addition to degeneracy:

Phases labelled by subgroup      and an element of    

= permutation
action 

= equivalence class of
projective representation 



  

Phases additionally labelled by
- subgroup   of symmetry group
- equivalence classes of proj. representations of     

Summary

● classification of 1D systems with exact Matrix Product ground states
● phases defined by paths of gapped Hamiltonians
● MPS ↔ parent Hamiltonians: construct path of states
● Isometric form: - same phase

- captures long-range properties
- commuting parent Hamiltonian

● Classification without symmetries:

Phases labelled by ground state degeneracy.

● Classification with on-site symmetry      :


