Classifying gapped quantum phases using Matrix Product States

Norbert Schuch

California Institute of Technology Institute for Quantum Information

joint work with David Pérez-García (Madrid) and Ignacio Cirac (Munich)

Introduction

- What is the structure of gapped **one-dimensional quantum phases**?
- Is the AKLT phase different from e.g. a dimerized system, or a trivial (product) phase? (And if yes, in which sense?)
- Is there an analogy to **topological protection** in one dimension?
- This talk:

Classification of gapped 1D phases in the Matrix Product state formalism

- Structure of the talk:
 - what are Matrix Product States (MPS)
 - what do I mean by "phases"
 - phases in the MPS formalism
 - standard form of MPS for classification of phases
 - classification of gapped phases
 - classification of phases under symmetries

The area law

- Guideline for suitable ansatz states?
- Area law for ground states:

entanglement located around the boundary

Matrix Product States

• Local description of many-body states with area law?

• system with **entropic area law** ⇔ **well described** by MPS

[Verstraete & Cirac, PRB '06; Hastings, JSTAT '07; Schuch et al., PRL '08]

describe ground/thermal states of local Hamiltonians efficiently

[Hastings, PRB '06, PRB '07, JSTAT '07]

- toolbox for exactly solvable models:
 - MPS are exact ground states of local Hamiltonians
 - many properties can be computed analytically

The AKLT state, and parent Hamiltonians

• Example: AKLT state [Affleck, Kennedy, Lieb & Tasaki, PRL '87]

- Hamiltonian: $H = \sum h_i$, with $h_i = \Pi_{S=2} \Rightarrow h_i |\Psi_{AKLT}\rangle = 0$
- $|\Psi_{AKLT}\rangle$ is **unique ground state** of *H*, and *H* has a spectral gap
- Every MPS has an associated parent Hamiltonian with
 - unique ground state or fixed degeneracy
 - spectral gap [Fannes, Nachtergaele, Werner, CMP '92; Nachtergaele, CMP '96]

Framework for classification of phases

- we will study systems with exact MPS ground states
- same phase \leftrightarrow we can **interpolate without phase transition**

•
$$H_0 = \sum_{i=1}^N h_0(i, i+1), \ H_1 = \sum_{i=1}^N h_1(i, i+1)$$
 are in same phase

iff there exists $H_{\gamma} = \sum h_{\gamma}(i, i+1)$ s.th.

- h_γ continous and bounded
- H_{γ} is uniformly gapped in γ and N

• we allow **blocking**

of a constant number of sites

• we allow for **ancillas**

• extension: what if we impose symmetries $[H_{\gamma}, U_g^{\otimes N}] = 0$?

Classification using MPS

• state \leftrightarrow Hamiltonian duality: perform **classification for states**

- construct interpolating path \mathcal{P}_{γ} from \mathcal{P}_0 to \mathcal{P}_1
 - → need to ensure **continuity** and **gappedness**!
- simplify interpolation using **normal form**
 - first interpolate to normal form (well-conditioned)
 - then interpolate between normal forms (simple structure)

The isometric form

• systems with **unique ground state**:

• isometric form (up to basis choice):

 $h=\mathbb{1}-\ket{\omega_D}ra{\omega_D}$

 \rightarrow characterized only by D

• interpolation between different D and D':

$$|\omega(heta)
angle:= heta|\omega_D
angle+(1- heta)|\omega_{D'}
angle$$

 $h(heta) = 1 - |\omega(heta)
angle\langle\omega(heta)|$

\Rightarrow all states in the same phase

Classification – degenerate ground states

• systems with \mathcal{A} -fold **degenerate ground state**

 \rightarrow isometric form (up to basis choice):

$$egin{aligned} h_{ ext{GHZ}} &= \mathbbm{1} - \sum\limits_lpha ert lpha, lpha
angle \langle lpha, lpha ert lpha, ert lpha,$$

 \rightarrow commuting, since $|\alpha\rangle$ "classical" (locally broken symmetry!)

• interpolation between different D_{α} and D'_{α} :

$$|\omega_lpha(heta)
angle:= heta|\omega_{D_lpha}
angle+(1- heta)|\omega_{D'_lpha}
angle$$

$$h_{\omega}(heta) = \sum_{lpha} |lpha
angle \langle lpha | ig(\mathbbm{1} - | \omega_{lpha}(heta)
angle \langle \omega_{lpha}(heta) | ig)$$

 \Rightarrow all systems with same ground state degeneracy ${\cal A}$ in the same phase

Classification of phases without symmetries

- Classification of Hamiltonians with MPS ground states
- H_1, H_2 in same phase \leftrightarrow smooth gapped path H_{γ} exists

Systems with same ground state degeneracy \mathcal{A} are in the same phase. Different degeneracies label different phases.

- Proof steps:
 - MPS \leftrightarrow parent Hamiltonian duality
 - construct path of states $|\mu[\mathcal{P}_{\gamma}]\rangle \rightarrow$ induces path H_{γ}
 - isometric form $\mathcal{P} = QW \rightarrow \hat{\mathcal{P}} = W$ is in same phase
 - classify phases for isometric forms
 - isometric form \Rightarrow commuting parent Hamiltonian \Rightarrow simple class.

Phases under symmetries

• Phases under symmetries:

Impose constraint $[H_{\gamma}, U_g^{\otimes N}] = 0$ on interpolating path H_{γ}

• U_g : unitary representation of symmetry group G, - $U_g U_h = U_{gh}$ [e.g. $G = \mathbb{Z}_2, G = \mathbb{Z}_2 \times \mathbb{Z}_2, G = SO(3)$]

• Different representations U_g^0, U_g^1 (e.g. spin-0 and spin-1 SO(3)):

 \rightarrow require invariance of H_{γ} under $U_g = U_g^0 \oplus U_g^1$

• symmetry of $H_{\gamma} \Leftrightarrow$ symmetry of corresponding MPS $|\mu[P_{\gamma}]\rangle$

 $|\mu[\mathcal{P}_{\gamma}]
angle = U_{g}^{\otimes N} |\mu[\mathcal{P}_{\gamma}]
angle$ (maybe with some phases ...)

MPS and symmetries

- How is symmetry $|\mu[\mathcal{P}]\rangle = U_g^{\otimes N} |\mu[\mathcal{P}]\rangle$ reflected in \mathcal{P} ?
- Restrict to injective MPS:

transformation to isometric form

 $P_{\lambda} = Q_{\lambda}W$ keeps symmetry

• symmetry action in isometric form:

$$V_g$$
 \bar{V}_g V_g \bar{V}_g

in some **fixed** basis

• impose symmetry via $U_g = U_g^0 \oplus U_g^1$: \Rightarrow basis choice **unambiguous**

Projective representations

• What is the **structure** of V_g ?

$$\hat{U}_g = \mathcal{P}^{-1} U_g \mathcal{P} = V_g \otimes \bar{V}_g$$
$$\hat{U}_g \hat{U}_h = \hat{U}_{gh}$$

 $\Rightarrow \qquad \begin{cases} \text{projective representation} \\ V_g V_h = e^{i\omega(g,h)} V_{gh} \end{cases}$

• V_g only defined up to phase $V_g \leftrightarrow e^{i\phi_g}V_g$:

equivalence classes $\omega(g,h)\sim\omega(g,h)+\phi_{gh}-\phi_g-\phi_h$

 \rightarrow equivalence classes form group: 2nd cohomology group $\mathrm{H}^2(G, \mathbb{C})$

Example 1: $G = \mathbb{Z}_2 \otimes \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$ $V_{00} = \mathbb{1} | V_{10} = Z$ $V_{01} = X | V_{11} = Y$ $V_{10}V_{01} = ZX = -iY = -iV_{11}$ $V_{10}V_{01} = ZX = iY = iV_{11}$ $V_{10}V_{01}V_{10}^{\dagger}V_{01}^{\dagger} = XZXZ = -\mathbb{1}$ Example 2: $spin-\frac{1}{2}$ repres. of SO(3): $exp[2\pi iS_z] = -\mathbb{1}$

• will show: Equivalence class of ω determines phase! [cf. Pollmann et al., PRB '10; Chen, Gu, Wen, PRB '11]

Interpolation with same cohomology class

• Interpolate from $U_g^0 = V_g^0 \otimes \bar{V}_g^0$ to $U_g^1 = V_g^1 \otimes \bar{V}_g^1$

• Interpolate along path w/ symmetry $V_g \otimes \overline{V}_g$, where [cf. Chen, Gu, Wen, PRB '11]

with interpolating path $|\omega_{\theta}\rangle = \theta \sum_{i=1}^{D_0} |i,i\rangle + (1-\theta) \sum_{i=D_0+1}^{D_0+D_1} |i,i\rangle \quad \bigcup_{\mathbf{V}_g^{\mathbf{0}} \to \mathbf{V}_g^{\mathbf{0}} \oplus \mathbf{V}_g^{\mathbf{0}} \oplus \mathbf{V}_g^{\mathbf{0}} \oplus \mathbf{V}_g^{\mathbf{0}}$

• key point: V_g is still projective representation:

 $V_g = \begin{pmatrix} V_g^0 \\ \hline \\ V_g^1 \end{pmatrix}$

$$\boldsymbol{V_{g}V_{h}} = \begin{pmatrix} V_{g}^{0}V_{h}^{0} & & \\ & V_{g}^{1}V_{h}^{1} \end{pmatrix} = \begin{pmatrix} e^{i\omega(g,h)}V_{gh}^{0} & & \\ & e^{i\omega(g,h)}V_{gh}^{1} \end{pmatrix} = \boldsymbol{e^{i\omega(g,h)}V_{gh}}$$

• Note: interpolation is in too big space: $(V_g^0 \oplus V_g^1) \otimes (\bar{V}_g^0 \oplus \bar{V}_g^1)$ instead of $(V_g^0 \otimes \bar{V}_g^0) \oplus (V_g^1 \otimes \bar{V}_g^1)$, but this can be fixed (using ancillas or blocking)

Separation of phases

- What if V_g^0 and V_g^1 belong to **different equivalence classes**?
- problem: V_g is not a representation:

$$\boldsymbol{V_{g}V_{h}} = \begin{pmatrix} V_{g}^{0}V_{h}^{0} & \\ & V_{g}^{1}V_{h}^{1} \end{pmatrix} = \begin{pmatrix} e^{i\omega_{0}(g,h)}V_{gh}^{0} & \\ & e^{i\omega_{1}(g,h)}V_{gh}^{1} \end{pmatrix} \neq e^{i\omega(g,h)}V_{gh}$$

how to prove impossibility of interpolation?

$$\begin{array}{c} H_{\gamma} \text{ smooth \& gapped} & & |\mu[\mathcal{P}]\rangle \text{ smooth} & & \mathcal{P} \text{ smooth} \\ \hline \\ V_g \text{ (up to phase) smooth} & & V_g \otimes \bar{V}_g = \mathcal{P}^{-1}U_g\mathcal{P} \text{ smooth} \\ \hline \\ d \,\omega(g,h) = \delta_g + \delta_h - \delta_{gh} \end{array}$$
equivalence class of ω cannot change!

Degenerate systems: Phases under symmetries

- What if system has **degenerate ground state**?
- Action of symmetry on virtual level:

$$U_g \mathcal{P} = \mathcal{P} P_g \Big(\bigoplus_{\alpha} V_g^{\alpha} \otimes \bar{V}_g^{\alpha} \Big)$$

 P_g permutes different ground state sectors α V_g^{α} induced representation from projective representation $V_h^{\alpha_0}$ of the subgroup $G \supset H = \{h \in G : P_g(\alpha_0) = \alpha_0\}$

• In addition to degeneracy:

Summary

- classification of 1D systems with exact Matrix Product ground states
- phases defined by paths of gapped Hamiltonians
- MPS \leftrightarrow parent Hamiltonians: construct path of states
- Isometric form: same phase
 - captures long-range properties
 - commuting parent Hamiltonian
- Classification without symmetries:

Phases labelled by ground state degeneracy.

• Classification with on-site symmetry U_g :

Phases additionally labelled by

- subgroup H of symmetry group
- equivalence classes of proj. representations of ${\boldsymbol{H}}$