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Quantum Phase Transitions

One of the most important questions in quantum statistical

mechanics is to understand the nature of phase transitions.

Finding models which exhibit this phenomena is also crucial.

Results concerning long range order and Anderson localization

address this question directly.

There has been much recent interest in the phase associated to

gapped ground states.

Basic Question: What does it mean for two gapped ground states

of a quantum system to belong to the same phase?
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Some Heuristics

Let ψ0 and ψ1 be two gapped ground states of a given quantum

system. This means that there are (finite range) Hamiltonians

H(0) and H(1) for which ψ0 and ψ1 are corresponding ground

state eigenvectors, and moreover, each of these Hamiltonians has a

spectral gap above the ground state energy.

In the physics literature, it has been said that ψ0 and ψ1 belong to

the same phase if there is a family of (finite range) Hamiltonians

H(s), continuous for 0 ≤ s ≤ 1, for which H(s) has a

non-vanishing spectral gap above its ground state for all

0 ≤ s ≤ 1. Here, of course, H(0) and H(1) are as above.
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Our Goal

Our goal was to prove a theorem which provides some rigor to

these ideas. We present sufficient conditions under which the

above heuristics guarantee that, in finite volume, the two ground

states are unitarily equivalent. Moreover, this unitary equivalence

can be obtained as a flow corresponding to quasi-local interactions.

Our results further show that, again under certain conditions, this

flow converges to an automorphism in the thermodynamic limit.

Hence, unitary equivalence of states in finite volume leads to an

automorphic equivalence of states in the infinite volume context.
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Quantum Spin Systems

In this talk, we restrict our attention to quantum spin systems

defined over Zd . Associate to each x ∈ Zd a finite dimensional

Hilbert space Hx . For any finite Λ ⊂ Zd , a composite Hilbert

space is given by

HΛ =
⊗
x∈Λ

Hx ,

and the corresponding algebra of observables is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ) .
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Infinite Volume Algebras

If X ⊂ Λ, then by identifying A ∈ AX with A⊗ 1lΛ\X ∈ AΛ, we see

that AX ⊂ AΛ. In this case, we can inductively define

Aloc =
⋃

Λ⊂Zd

AΛ ,

the algebra of all local observables. The completion of Aloc with

respect to the operator norm, which we denote by AZd , is the

C ∗-algebra of all quasi-local observables.
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Models and Interactions

The models we are interested in are defined in terms of

interactions. An interaction for these quantum spin systems is a

map Φ : P(Zd)→ Aloc, i.e. from the set of finite subsets of Zd to

the algebra of local observables, such that for all finite X ⊂ Zd ,

Φ(X )∗ = Φ(X ) and Φ(X ) ∈ AX .

For finite Λ ⊂ Zd , local Hamiltonians are given by

HΛ =
∑
X⊂Λ

Φ(X ),

and the corresponding Heisenberg dynamics, {τΛ
t }t∈R, is defined by

τΛ
t (A) = e itHΛAe−itHΛ , for A ∈ AΛ.
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Assumptions

Let Φ(s) be a family of interactions on Zd parametrized by

0 ≤ s ≤ 1. Let a > 0.

1) We need a boundedness assumption on Φ(s):

‖Φ‖a = sup
x ,y∈Zd

ea|x−y |
∑

X⊂Zd :
x ,y∈X

sup
0≤s≤1

‖ΦX (s)‖ <∞

This clearly includes finite range, uniformly bounded interactions

depending smoothly on s.

Assumption 1 implies a uniform Lieb-Robinson bound for Φ(s):∥∥∥[τHΛ(s)
t (A),B

]∥∥∥ ≤ C (A,B)e−a(d(X ,Y )−va|t|)

for all A ∈ AX , B ∈ AY , and t ∈ R.
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Assumption (cont.)

2) We need a smoothness assumption on Φ(s):

‖∂Φ‖a = sup
x ,y∈Zd

ea|x−y |
∑

X⊂Zd :
x ,y∈X

|X | sup
0≤s≤1

‖Φ′X (s)‖ <∞

3) We need a uniform gap assumption on Φ(s):

There exists γ > 0 s.t. to each finite Λ ⊂ Zd ,

σ (HΛ(s)) = σ1 (HΛ(s)) ∪ σ2 (HΛ(s))

each non-empty with

d (σ1 (HΛ(s)) , σ2 (HΛ(s))) ≥ γ > 0.

Here γ, C (A,B), and va are each independent of both Λ and s.
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Gaps and the Spectral Projections

It is well-known that, in general, there exist unitaries UΛ(s) such

that the spectral projection PΛ(s) corresponding to σ1(HΛ(s)) is

given by

PΛ(s) = UΛ(s)PΛ(0)UΛ(s)∗ .

In particular, this shows that the spectral projection PΛ(1) is

unitarily equivalent to the spectral projection PΛ(0). Crucial for

our result is that we have an explicit expression for UΛ(s). It is

found, see talk of Sven, by writing the spectral projection as a

contour integral over the resolvent.
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The Spectral Flow

We show that UΛ(s) satisfies a specific evolution equation:

−i
d

ds
UΛ(s) = DΛ(s)UΛ(s), UΛ(0) = 1l

where

DΛ(s) =

∫ ∞
−∞

τ
HΛ(s)
t

(
H ′Λ(s)

)
Wγ(t) dt

=
∑
X⊂Λ

∫ ∞
−∞

τ
HΛ(s)
t

(
Φ′X (s)

)
Wγ(t) dt .

We define the spectral flow by setting

αΛ
s (A) = UΛ(s)∗AUΛ(s) for A ∈ AΛ and 0 ≤ s ≤ 1.

As is clear from the above, αΛ
s is a flow corresponding to an

s-dependent, quasi-local interaction.
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A Lieb-Robinson Bound

A key result is the proof of a Lieb-Robinson type bound, uniform in

the volume, for the spectral flow.

Theorem

Under assumptions 1-4 above,∥∥∥[αΛ
s (A),B

]∥∥∥ ≤ C (A,B)ev |s|
∑

x∈X ,y∈Y

F (|x − y |)

for all A ∈ AX , B ∈ AY , and 0 ≤ s ≤ 1.

Here, for r >> 1, the function

F (r) = Ce
−µ r

ln2(r) .

Up to some non-trivial technicalities, this bound follows from

known results on LRBs for time dependent interactions.
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Thermodynamic Limit

It is well-known that if the finite volume dynamics corresponding

to an interaction over a quantum spin system satisfies a

Lieb-Robinson bound which is independent of the volume, then

there is a well defined dynamics in the thermodynamic limit. The

same holds true for the spectral flow.

Theorem

Let {Λn} be a sequence of finite, increasing, and exhaustive

subsets of Zd which satisfy additional technical assumptions.

Then, there is a strongly continuous cocycle of ∗-automorphisms

αs defined on AZd such that for all A ∈ Aloc

lim
n→∞

‖αΛn
s (A)− αs(A)‖ = 0 .

The convergence is uniform for s ∈ [0, 1].
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Properties of the Limiting Flow

The above result demonstrates that the unitary equivalence of the

”isolated” spectral projections in the finite volume leads to an

automorphism of the quasi-local observables in the thermodynamic

limit. More is true:

Theorem

Under the assumptions above,

i) αs satisfies a sub-exponential Lieb-Robinson bound.

ii) If β is a local symmetry of the family Φ(s), i.e.

β(ΦX (s)) = ΦX (s), then β is also a symmetry of αs , i.e.,

αs ◦ β = αs .

iii) If the family Φ(s) is translation invariant, then αs commutes

with translations.
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Equivalence of Gapped Quantum Phases

Under the assumptions above, let SΛn(s) denote the set of states

of the system in volume Λn that are mixtures of eigenstates with

energies in σ1(HΛn(s)). Let S(s) be the set of weak-∗ limit points

as n→∞. For the finite volume, the definition of the spectral

flow implies that

SΛn(s) = SΛn(0) ◦ αΛn
s .

We have proven that

Theorem

The states ω(s) ∈ S(s) are automorphically equivalent to

ω(0) ∈ S(0) for all 0 ≤ s ≤ 1, in fact,

S(s) = S(0) ◦ αs .
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In Summary

Consider two gapped ground states of a given quantum spin

system. If there is a connecting family of interactions Φ(s) which

satisfy requisite boundedness, smoothness, and gap assumptions,

then the ground state structure is preserved along this

interpolating curve of models. In this case, it is reasonable to say

that the two initial gapped ground states are in the same phase.

Note that the phase is being defined through an equivalence of

states (or sets of states), not models. Moreover, the equivalence

does not guarantee that the states in a set are automorphically

equivalent among themselves.
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Conclusion

We continue to improve our understanding of the dynamics

corresponding to quantum many body systems. Recent results

have been used to better understand correlations and low lying

excitations. Moreover, locality properties have led to new

perspectives on perturbation theory. However, there are a wealth

of open questions yet to be explored . . .


