# Ferromagnetic Quantum Spin Chains with $\mathrm{SU}_{q}(2)$ Symmetry 

Shannon Starr<br>University of Rochester May 19, 2011

Based on joint work with Bruno
Nachtergaele and Stephen Ng

## 1/ 20

## Spin-1/2, spin chain

1. Chain of length $L$
2. For each $k \in\{1, \ldots, L\}$, single site Hilbert space

$$
\mathcal{H}_{k}=\mathbb{C}^{2}, \quad \text { On. basis }|\uparrow\rangle,|\downarrow\rangle
$$

3. Usual spin-1/2 spin matrices

$$
\begin{gathered}
S^{(1)}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], S^{(2)}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \\
S^{(3)}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

4. Total Hilbert space $\mathcal{H}_{[1, L]}=\otimes_{k=1}^{L} \mathcal{H}_{k}$,

$$
S_{k}^{(a)}=\mathbb{1}_{\mathcal{H}_{1}} \otimes \cdots \otimes \mathbb{1}_{\mathcal{H}_{k-1}} \otimes S^{(a)} \otimes \mathbb{1}_{\mathcal{H}_{k+1}} \otimes \cdots \otimes \mathbb{1}_{\mathcal{H}_{L}}
$$

## Heisenberg ferromagnet

$$
\begin{aligned}
H_{[1, L]} & =\sum_{k=1}^{L-1} h_{k, k+1} \\
h_{k, k+1} & =\frac{1}{4} \mathbb{1}-\boldsymbol{S}_{k} \cdot \boldsymbol{S}_{k+1} \\
& =\frac{1}{4} \mathbb{1}-S_{k}^{(1)} S_{k+1}^{(1)}-S_{k}^{(2)} S_{k+1}^{(2)}-S_{k}^{(3)} S_{k+1}^{(3)}
\end{aligned}
$$

In the $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$
basis for $\mathcal{H}_{k} \otimes \mathcal{H}_{k+1}$,

$$
h_{k, k+1}=\frac{1}{2}\left[\begin{array}{llll}
0 & & & \\
& +1 & -1 & \\
& -1 & +1 & \\
& & & 0
\end{array}\right]
$$

In other words,

$$
h_{k, k+1}=\operatorname{Proj}\left(\frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}\right)
$$

## 3/ 20

## Symmetries

Total spin operators: $a=1,2,3$,

$$
S_{[1, L]}^{(a)}=\sum_{k=1}^{L} S_{k}^{(a)}
$$

Call $S_{[1, L]}^{(3)}$ the "magnetization" operator.
The total spin operator

$$
S_{[1, L]}^{2}=\left(S_{[1, L]}^{(1)}\right)^{2}+\left(S_{[1, L]}^{(2)}\right)^{2}+\left(S_{[1, L]}^{(3)}\right)^{2}
$$

The triple,
Hamiltonian, magnetization, total spin

$$
H_{[1, L]}, \quad S_{[1, L]}^{(3)}, \quad S_{[1, L]}^{2}
$$

commute.

A ferromagnetic Lieb-Mattis theorem:
For each $s \in\left\{\frac{1}{2} L, \frac{1}{2} L-1, \ldots, \frac{1}{2}\right.$ or 0$\}$, let
$\mathcal{H}_{[1, L]}^{(s)}=\left\{\psi \in \mathcal{H}_{[1, L]}: S_{[1, L]}^{2} \psi=s(s+1) \psi\right\}$

Define
$E_{0}(s)=\min \left\{\frac{\left\langle\psi, H_{[1, L]} \psi\right\rangle}{\|\psi\|^{2}}: 0 \neq \psi \in \mathcal{H}_{[1, L]}^{(s)}\right\}$.

Then
$E_{0}\left(\frac{1}{2} L\right)<E_{0}\left(\frac{1}{2} L-1\right)<\ldots<E_{0}\left(\frac{1}{2}\right.$ or 0$)$
$\star$ Lieb and Mattis proved the opposite ordering for the energy levels of bipartite antiferromagnets, in general.

## Elements of the proof:

First proof: Nachtergaele, Spitzer, S New proof: Nachtergaele, Mg, S

Given any $k<\ell$, define the spin singlet

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{i}=\begin{array}{l}
\uparrow \\
\dot{k} \\
\stackrel{\downarrow}{\ell}
\end{array}-\begin{array}{l}
\downarrow \\
k
\end{array} \stackrel{\uparrow}{\ell} \\
& =|\uparrow\rangle_{\mathcal{H}_{k}} \otimes|\downarrow\rangle_{\mathcal{H}_{\ell}}-|\downarrow\rangle_{\mathcal{H}_{k}} \otimes|\uparrow\rangle_{\mathcal{H}_{\ell}} .
\end{aligned}
$$

A spin configuration above a dot is understood as a vector.

Below $=$ a dual vector, linear functional. Funny convention:

$$
\begin{aligned}
& =\left\langle\downarrow | _ { \mathcal { H } _ { k } } \otimes \left\langle\left.\uparrow\right|_{\mathcal{H}_{\ell}}-\left\langle\uparrow | _ { \mathcal { H } _ { k } } \otimes \left\langle\left.\downarrow\right|_{\mathcal{H}_{\ell}} .\right.\right.\right.\right. \\
& \bigcirc=-2
\end{aligned}
$$

## 6/ 20

## Temperley-Lieb algebra

With this, we may also define operators $U_{k, k+1}=-2 h_{k, k+1}$


These satisfy the Temperley-Lieb algebra relations

$$
\begin{gathered}
U_{k, k+1}^{2}=-2 U_{k, k+1} \\
U_{k, k+1} U_{k+1, k+2} U_{k, k+1}=U_{k, k+1} \\
U_{k, k+1} U_{k-1, k} U_{k, k+1}=U_{k, k+1} \\
|k-\ell|>1 \Rightarrow U_{k, k+1} U_{\ell, \ell+1}=U_{\ell, \ell+1} U_{k, k+1}
\end{gathered}
$$



## Graphical basis

- Each vertex has at most one arc incident to it.
- No two arcs cross.
- No arc spans a vertex with 0 arcs incident to it.
- All $\downarrow$ spins are to the left of all $\uparrow$ spins.


## 9/ 20

Examples:


The set of all vectors satisfying these rules forms a non-orthonormal basis for $\mathcal{H}_{[1, L]}$.

Good signs
We want to apply the Perron-Frobenius theorem.

All $U_{k, k+1}$ 's have nonnegative off-diagonal matrix entries in the graphical basis.


## 11/ 20

Highest weight vectors

The Hamiltonian has ergodic subspaces.

Suppose there are $n$ arcs and all spins $=\uparrow$.
Then magnetization $=$ total spin $=\frac{1}{2} L-n$.
These are called "highest weight vectors."
$\widetilde{\mathcal{H}}_{[1, L]}^{(s)}:=\operatorname{span}($ h.w. vectors of total spin $s$ )

$$
E_{0}(s)=\min \left\{\frac{\left\langle\psi, H_{[1, L]} \psi\right\rangle}{\|\psi\|^{2}}: 0 \neq \psi \in \widetilde{\mathcal{H}}_{[1, L]}^{(s)}\right\}
$$

$$
\begin{gathered}
E_{0}(s)=-\max _{\uparrow-\mathrm{F}} \operatorname{spec}\left(-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s)}\right) \\
\hline
\end{gathered}
$$

Compare $E_{0}(s)$ and $E_{0}(s+1)$ : magnetization $=s$, total spin $=s$ or $s+1$.

Includes subspace $\widetilde{\mathcal{H}}_{[1, L]}^{(s)}$
$n=\frac{1}{2} L-s$ arcs and all unpaired spins $\uparrow$
Also includes all graphical basis vectors $n-1$ arcs and left-most unpaired spin $=\downarrow$

Changing the $\downarrow$ to $\uparrow$ defines a bijection to h.w. vectors of $\widetilde{\mathcal{H}}_{[1, L]}^{(s+1)}$.

Matrix for $-H_{[1, L]}$ :
nonnegative and block lower triangular

$$
\left[\begin{array}{cc}
-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s)} & 0 \\
* & \\
-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s+1)}
\end{array}\right]
$$

Moreover there is a positive eigenvector: Apply spin lowering to the P-F eigenvector of

$$
-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s+1)}
$$

Perron-Frobenius then implies

$$
\begin{aligned}
& \Rightarrow \quad \max \operatorname{spec}\left(-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s+1)}\right) \\
& \geq \max \operatorname{spec}\left(-H_{[1, L]} \upharpoonright \widetilde{\mathcal{H}}_{[1, L]}^{(s)}\right) \\
& E_{0}(s+1) \leq E_{0}(s)
\end{aligned}
$$

## Two extensions

- Easy one. We need total ordering of spin sites. Can replace $\mathrm{SU}(2)$ by $\mathrm{SU}_{q}(2), q>0$.

$$
\bigcirc=-[2]=-\left(q+q^{-1}\right)
$$

XXZ model.

- Harder one.

We can also extend to single-site spins $s>1 / 2$.

## 15/ 20

## Jones-Wenzl projection

For $n$ spins, the Jones-Wenzl projector is the projector onto symmetric tensors:


## 16/ 20

## Identities

$$
\stackrel{n \mid}{n-2 \mid}_{\frac{n}{\mid n}}^{\sum_{n}^{\mid n}}{ }^{n-2}=0
$$

For $m \leq n$,


Jones-Wenzl relation:

... and many more.

## Positive interactions

DEFINE: interaction is positive, if off-diagonal matrix entries $\geq 0$ in the graphical "dual canonical" basis. (See Frenkel and Khovanov.)

We characterized all positive interactions:
If $s_{k}=n_{k} / 2, s_{k+1}=n_{k+1} / 2$,
and $n_{k} \geq n_{k+1}$,

for $m=0, \ldots, n_{k+1}$,
span the simplicial cone of positive interactions.

## Examples

For $s=1, n=2 s=2$,


This is the Heisenberg antiferromagnet.

## 19/ 20


= the AKLT model, Affleck, Kennedy, Lieb, Tasaki.

Necessity?

The Perron-Frobenius theorem gives a sufficient condition for "ferromagnetic ordering of energy levels."

But it may not be necessary.

has $E_{0}(s)=0$ for all $s$ if $L$ is big enough.

