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Introduction
a. endoscopic transfer vs stable transfer

two related transfer principles introduced by Langlands 1970±, 2010±

archimedean local case and its relation to broader picture

endoscopic transfer relates invariant harmonic analysis on given
group G (R) to stable harmonic analysis on the generally lower
dimensional endoscopic groups H1(R)

part of broader themes involving stable conjugacy, packets of
representations and stabilization of the Arthur-Selberg trace formula

second principle, stable transfer, concerns stable harmonic analysis
on any two groups G (R), H(R) related by a morphism of L-groups,
part of Beyond Endoscopy, not discussed here
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Introduction
b. endoscopic transfer: geometric side vs spectral side

stable conjugacy in G (R): G (C)-conjugacy with small refinement

start with geometric transfer: unstable combinations of orbital
integrals on given group G (R) match stable combinations
on an endoscopic group H1(R)

matching: based on norm correspondence for very regular
stable conjugacy classes in H1(R) and (twisted) classes in G (R)

matching provides a transfer of test functions from G (R) to H1(R),
then a dual map from Z-finite stable distributions on H1(R) to
Z-finite invariant distributions on G (R)

spectral transfer: interpret this dual map in terms of traces of
irreducible admissible representations
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Introduction
c. our approach

geometric side: transfer for orbital integrals has been proved
using transfer factors

transfer factors = coeffi cients for unstable combinations:
are defined a priori and have various properties useful for descent
arguments, comparison among inner forms, global questions etc.

[Langlands-Shelstad, Kottwitz-Shelstad]

introduce spectral transfer factors with same basic structure
(incomplete) and prove similar properties

show that they are the only possible coeffi cients for spectral
interpretation of dual transfer

apply this to various known identities to get (partial) spectral transfer

the spectral factors contain precise information needed about packets
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Endoscopic transfer: geometric side
a. general twisted setting

G connected, reductive algebraic group defined over R

θ an R-automorphism of G , v a quasi-character on G (R)
study representations π for which π ◦ θ ' v⊗ π

quasi-split data (G ∗, θ∗) :
G ∗ quasi-split over R, has an R-splitting spl∗ = (B∗,T ∗, {Xα})

[ultimately choice of spl∗ will not matter]
θ∗ an R-automorphism of G ∗ preserving spl∗

inner form (G , θ, η) of (G ∗, θ∗) :
(G , θ) as above, and η : G → G ∗ an inner twist such that
η transports θ to θ∗ up to inner automorphism:

θ = Int(hθ) ◦ η−1 ◦ θ∗ ◦ η, where hθ ∈ G

up to isomorphism of inner forms, can arrange that transport
η−1 ◦ θ∗ ◦ η is defined over R, so Int(hθ) ∈ Gad (R)
[use fundamental splittings − exist for all G ]
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Endoscopic transfer: geometric side
b. dual data

dual complex group G∨ with splitting spl∨ dual to spl∗,
action of Weil group WR through WR → Γ = Gal(C/R) = {1, σ}
action preserves spl∨, and L-group LG = G∨ oWR

automorphism θ∨ of G∨: preserves spl∨ and dual to θ∗

quasi-character v comes from a : WR → LZ = Center(G∨)oWR

automorphism Lθa of LG extends θ∨ with twist by a:
Lθa(g × w) = θ∨(g)a(w), for g ∈ G∨,w ∈ WR

in talk: assume G∨-component of a is bounded, so v unitary
[otherwise, insert essentially in various statements ...]
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Endoscopic transfer: geometric side
bb. endoscopic data

(bounded) supplemented endoscopic data ez :
endoscopic data e = (H,H, s), together with
z-extension data (H1, ξ1) [Kaletha refinement ...]

basic picture:

1→ Centθ∨(s,G
∨)0 →

LH1
ξ1
↗

H � WR

↘
incl

LG

→ 1 (1)

where WR acts on Centθ∨(s,G
∨)0 = H∨ by conjugation

by elements of CentLθa (s,
LG )
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Endoscopic transfer: geometric side
c. norm correspondence

in talk: assume θ preserves a fundamental splitting
[at each step should note effect of extra twist by elt of Gad (R)]

there is Γ-map A from the set Clss (H1) of semisimple conjugacy
classes in H1(C) to the set Clθ-ss (G , θ) of θ-semisimple θ-conjugacy
classes in G (C):

Clss (H1)
↓

Clss (H)
endo−→ Clθ∗-ss (G

∗, θ)
inner−→ Clθ-ss (G , θ)

(2)

γ1 is strongly G -regular if and only if A maps its class to a class of
strongly θ-regular elements in G

strongly G -regular γ1 is a norm of strongly θ-regular δ, i.e. (γ1, δ)
is a norm pair, if and only if δ is in image of class of γ1
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Endoscopic transfer: geometric side
d. transfer factors

suffi cient to specify geometric transfer on very regular set:
all pairs (γ1, δ) ∈ H1(R)× G (R), where γ1 is strongly G -regular
and δ is strongly θ-regular

transfer factor ∆ is complex-valued function on very regular set

define ∆(γ1, δ) = 0 if (γ1, δ) is not a norm pair

now assume (γ1, δ), (γ
′
1, δ
′) are norm pairs

our transfer statement will not fix normalization for ∆(γ1, δ)
instead define canonical relative factor ∆(γ1, δ;γ

′
1, δ
′) and use

any factor ∆(γ1, δ) satisfying

∆(γ1, δ)/∆(γ′1, δ
′) = ∆(γ1, δ;γ

′
1, δ
′) (3)

two versions of transfer: here use factors for classical version
other version: (turns out to be) complex conjugate
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Endoscopic transfer: geometric side
dd. transfer factors (cont.)

definitions allow simultaneously treatment of inner forms
extended group = K -group: fills out stable conjugacy classes

particular normalizations , esp. Whittaker normalization for
several inner forms of quasi-split data (G ∗, θ∗)

relative ∆ is product ∆I∆II∆III ; only ∆III is genuinely relative
∆I ,∆III have Galois-cohomological definitions,
spectral versions in same groups [sample at end of talk]

∆II (γ1, δ) comes from analysis of jumps in orbital integrals
spectral version: different form, involves character formula
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Endoscopic transfer: geometric side
ddd. transfer factors (cont.)

toral data associated with norm pair (γ1, δ) : there is θ∗-stable pair
(B,T ) in G ∗, with T defined over R, and various maps yielding

δ
inner δ∗ ∈ T (C)

↓
γ1

z−→ γH
endo←→ γ∗ ∈ Tθ∗(R)

(4)

Rres = θ∗-restricted root system for T in G ∗,Galois orbits Ores
R1 = root system for T1 in H1,Galois orbits O1
to each indivisible Ores attach well-defined χα(

Nα(δ∗)rα − 1
aα

)

to each O1 attach well-defined χα1
( α1(γ1)−1

aα1
) [notation]

∆II (γ1, δ) is quotient over all indivisible Ores by all O1
χ-data, a-data: {χα}, {aα} etc. as above
same data used in ∆I ,∆III ; two of the three affect each of
relative ∆I ,∆II ,∆III but product ∆ is independent of all choices
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Endoscopic transfer: geometric side
e. main theorem and corollary [Sh 2012]

Theorem
For each θ-Schwartz fdg on G (R) there exists λ1-Schwartz f1dh1 on
H1(R) such that

SO(γ1, f1dh1) = ∑
δ, θ-conj

∆(γ1, δ) O
θ,v(δ, fdg) (5)

for all strongly G-regular γ1 in H1(R).

Corollary
If f has compact support then we may take f1 of compact support mod
Z1(R).
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Endoscopic transfer: geometric side
f. remarks on statement

corollary follows immediately from a theorem of Bouaziz

notation: Z1 = Ker(H1 → H), ez determines character λ1 on Z1(R),
require f1(z1h1) = λ1(z1)−1f1(h1) for z1 ∈ Z1(R), h1 ∈ H1(R)
∆(γ1, δ) is invariant under stable conjugacy in first variable,
also has correct behavior under translation by Z1(R)

SO(γ1, f1dh1) is usual normalized stable orbital integral

left and right: compatible Haar measures in denominators of quotients

(θ,v)-twisted orbital integral

Oθ,v(δ, fdg) :=
∫
Centθ(δ,G )(R)\G (R)

f (g−1δθ(g))v(g)
dg
dtδ

(6)

∆(γ1, δ) has correct behavior under θ-conjugacy to make
right side of (5) well-defined
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Endoscopic transfer: geometric side
ff. steps of proof

For proof of theorem:

(old) characterization of stable orbital integrals via
Harish-Chandra Plancherel theory in terms of jump behavior

introduce form better adapted to canonical transfer factors

Harish-Chandra descent for twisted orbital integrals
and semi-regular is suffi cient principle, along with
descent properties of the norm correspondence, reduce problem
to simple wall-crossing properties for transfer factors

(long) calculations with transfer factors to check
these properties �
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Endoscopic transfer: spectral side
a. dual transfer: summary

for each test fdg on G (R) attach test f1dh1 on H1(R)
with matching orbital integrals in the sense of (5) of main theorem

Θ1 : stable distribution on H1(R), correct Z1(R) behavior
and eigendistribution for center Z1 of universal enveloping algebra

then Θ : fdg → Θ1(f1dh1) well-defined θ-twisted invariant
distribution on G (R) and eigendistribution for Z

Θ1 tempered =⇒ Θ tempered

endo ez determines shift in infinitesimal character

formula for Θ1 as smooth function on regular set
=⇒ formula for Θ as smooth function on regular set
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Endoscopic transfer:spectral side
b. dual transfer as spectral transfer

goal: for a stable character Θ1 = St-Trace π1, where π1 irreducible
admissible representation of H1(R) with correct Z1(R) behavior,
to describe Θ explicitly as a combination of (θ,v)-twisted traces

f −→ Trace [π(f ) ◦ π(θ,v)] (7)

notation: π(θ,v) intertwines π ◦ θ and v⊗ π [also drop dg , dh]

thus to establish dual transfer in the form

St-Trace π1(f1) = ∑
π

∆(π1,π) [Trace π(f ) ◦ π(θ,v)] (8)

term on right side will be independent of normalization of π(θ,v)
[∆II involves twisted character formula and effects cancel]
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Endoscopic transfer: spectral side
bb. dual transfer as spectral transfer (cont.)

in place of very regular norm pairs (γ1, δ), (γ
′
1, δ
′),

consider very regular related pairs (π1,π), (π′1,π
′) :

define (almost) canonical ∆(π1,π;π′1,π
′)

again ∆ has same form ∆I∆II∆III ; may also define ∆(π1,π;γ1, δ)
in transfer theorems use geom-spec compatible factors:
∆(π1,π)/∆(γ1, δ) = ∆(π1,π;γ1, δ)

standard setting: θ = identity , v = trivial character
results =⇒ structure on packets of representations
... then twisted setting =⇒ compatible additional structure
on packets preserved by π → v−1 ⊗ (π ◦ θ)
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Endoscopic transfer: spectral side
c. very regular pairs

prescribe very regular pairs via Arthur parameters, start with G ∗

Arthur parameter: G∨-conjugacy class of an admissible hom
ψ = (ϕ, ρ) : WR × SL(2,C)→ LG

here ϕ [in general, essentially] bounded Langlands parameter

let S = Sψ = Cent(ψ(WR × SL(2,C)),G∨): ψ is elliptic if S0

central

ρ(SL(2,C)) ⊂ M∨ = M∨ϕ = Levi group Cent(ϕ(C×),G∨) in G∨

call ψ u-regular if ρ(SL(2,C)) contains regular unipotent elts of M∨

define groupM =Mϕ in LG as subgp gen by M∨ and ϕ(WR)
1 −→ M∨ −→ M � WR −→ 1

extract L-action same way as endo, M∗ = dual, quasi-split over R
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Endoscopic transfer: spectral side
cc. very regular pairs (cont.)

u-regular ψ is elliptic ⇐⇒ T ↪→ M∗ ↪→ G ∗ all over R,
with T anisotropic modulo the center of G

u-regular ψ = (ϕ, triv) is elliptic ⇐⇒ ϕ discrete series parameter

attach packet Π to u-regular ψ : L-packet if ρ = triv ,
or Arthur packet otherwise [see Adams-Johnson, just elliptic here]
do same for endo group: use only those u-regular ψ1 such that
ψ1(WR × SL(2,C)) lies in the image of endo H, up to conjugacy
[⇐⇒ members of attached Π1 have correct Z1(R) behavior]

such ψ1 determines parameter ψψ1
for G ∗,

Levi groupM1 for ψ1 determines subgroupMH of H
contained in LeviM for ψψ1

: call ψ1 G -regular ifMH =M
(ψ1,ψ) very regular pair: ψ1,ψ are u-regular and ψ1 is G -regular
very regular related pair: also ψ = ψψ1
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Endoscopic transfer: spectral side
d. standard setting: tempered pairs

same defs for pairs (π1,π) in packets (Π1,Π) attached to (ψ1,ψ)

start with standard setting, tempered (ρ = triv) and elliptic:
(8) says: St-Trace π1(f1) = ∑

π

∆(π1,π) Trace π(f )

(π1,π), (π′1,π
′) related pairs discrete series representations

with Langlands parameters (ϕ1, ϕ), (ϕ′1, ϕ′)

define relative factor ∆(π1,π;π′1,π
′)

toral data T1 → T , with T anisotropic mod center of G ,
a-data, χ-data for ∆I ,∆II ,∆III
∆II involves local formula for Trace π(f ) as smooth function ...
[fourth root of unity if rewrite usual Harish-Chandra formula]
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Endoscopic transfer: spectral side
dd. standard setting: tempered pairs (cont.)

via parabolic induction extend defns to ∆(π1,π;π′1,π
′),

∆(π1,π;γ1, δ), for all very regular norm pairs (γ1, δ)
and all tempered very regular related pairs (π1,π), (π′1,π

′)
[set ∆(π1,π) = 0 if pair not related]

proof of (8) for tempered very regular pairs: reduce quickly
to elliptic case, discrete series both sides, and then apply
Harish-Chandra characterization theorem: transfer Θ is tempered
invariant eigendistribution with correct infinitesimal character
and agrees with ∑

π

∆(π1,π) Trace π(f ) on regular elliptic set

now theorem for all tempered pairs? for example, need this
for converse: spec transfer for (f1, f ) =⇒ geom transfer for (f1, f )
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Endoscopic transfer: spectral side
e. standard setting: tempered transfer theorem

main case = elliptic on left: transfer discrete series to limits of
discrete series, limits which arise have LeviM of type (A1)n

then Hecht-Schmid character identities + analysis in G∨ identifies
transfer Θ as right side of (8), where factor ∆(π1,π) is defined via
analog of Zuckerman translation for parameters

conclude the following continuation of geom transfer thm, std setting:

Theorem
Suppose geom, spec factors ∆ are compatible. Then

St-Trace π1(f1dh1) = ∑
π

∆(π1,π) Trace π(fdg) (9)

for all tempered irreducible admissible representations π1 such that Z1(R)
acts by λ1.
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Endoscopic transfer: spectral side
f. comments

Conversely: if fdg , f1dh1 are test measures satisfying (9) then

SO(γ1, f1dh1) = ∑
δ conj

∆(γ1, δ) O(δ, fdg) (10)

for all strongly G-regular γ1 in Z1(R).
Proof: Use both transfer thms plus same SO ′s =⇒ same St-Traces

alternate argument to prove tempered spectral transfer:
(i) in the elliptic case the chosen ∆(π1,π) are the only possible
coeffi cients for a spectral version of dual transfer ..., plus they
have correct properties re translation principle and parabolic
induction ... again this depends also on properties of the
geometric factors and compatibility factors
(ii) theorem is true for some choice of coeffi cients [old result]
and so it is true with the factors ∆(π1,π) we have defined
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Endoscopic transfer: spectral side
g. standard setting: very regular pairs in general

still in standard setting, nontempered examples?
define ∆(π1,π) for very regular pairs in general:
enough to define ∆(π1,π;π′1,π

′) for some tempered (π′1,π
′),

then ∆(π1,π) := ∆(π1,π;π′1,π
′).∆(π′1,π

′)

start with elliptic case: construct (π′1,π
′) tempered elliptic

or just π′1 tempered elliptic in some cases

for transfer statement (9): apply alternate argument to
character identities of Adams-Johnson [see Arthur, Kottwitz]

or check directly that these factors ∆(π1,π) work in A-J
arguments: use familiar formula for relative factor
∆(π1,π;π′1,π

′) := ∆(π1,π)/∆(π′1,π
′) when π,π′ lie in same

Arthur packet

[remove elliptic assumption]
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Endoscopic transfer: spectral side
h. general twisted setting

return to twist by (θ,v) and start with tempered setting

now concerned only with (θ,v)-stable packets Π, i.e. those
Π preserved by π → v−1 ⊗ (π ◦ θ), along with attached
twist-packet Πθ,v consisting of those π ∈ Π fixed by this map

enough: θ preserves fundamental splitting [earlier comment]

essentially harmonic analysis on group G (R)o 〈θ〉 outside
Harish-Chandra class [some results not yet written in suffi cient
generality to claim transfer results in general]

approach to defining tempered spectral factors: again
elliptic setting first, translation, and then parabolic descent
[Mezo 2013: use results of Duflo for parabolic induction]
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Endoscopic transfer: spectral side
hh. general twisted setting (cont.)

spectral factors in tempered elliptic case: now constructions
parallel those for twisted geometric factors of Kottwitz-Shelstad,
again compatibility factors, parallel properties, etc.

Proof of transfer: apply alternate argument again, here to
character identities of Mezo

Mezo 2012: identities for elliptic (π1,π), also when
only π1 elliptic, with coeffi cients written in terms of data
from Duflo’s method rather than directly from Harish-Chandra
character formula

again similar approach to standard case to define twisted
factors ∆(π1,π) for nontempered very regular pairs (π1,π) ...
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Structure on packets
introduction

summary: along with geometric transfer factors come spectral
factors, in both standard and twisted settings; these express
dual transfer as a spectral transfer [incomplete ...]

now we use the relative factors ∆(π1,π;π′1,π
′) to establish

pairings of a packet Π with a finite group defined on dual side

then twisted relative factors ∆(π1,π;π′1,π
′) provide compatible

pairings for twist-packets Πθ,v within (θ,v)-stable Π

various (Galois-cohomological) properties of pairings have
consequences for harmonic analysis, e.g. inversion of spectral
transfer in tempered setting

[Whittaker normalizations =⇒ simplest spectral pairings]
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Structure on packets
a. standard setting

start with tempered packet Π and use relative factors
∆(π1,π;π1,π′), with π,π′ ∈ Π, to put structure on Π

π1 determined by spectral construction of endo data:

ϕ : WR → LG Langlands parameter for Π
S = Cent(ϕ(WR),G∨)0, Sad = image of S in (G∨)ad ,
S sc = preimage of Sad in (G∨)sc , ssc = semisimple element in S sc

s = image of ssc in G∨

H(s) = subgroup of LG generated by Cent(s,G∨)0 and ϕ(WR)
ez (ssc ) = ez (s) = attached suppl. endo data

by construction, ϕ factors through well-positioned ϕs : WR → LH1
now for π1 take any πs ∈ Πs = packet attached to ϕs
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Structure on packets
aa. standard setting

Theorem: ssc → ∆(πs ,π;πs ,π′) depends only on the image of ssc
under S sc → Sad → π0(Sad ) = Sad = sum of Z/2’s

and defines character on Sad , trivial iff π = π′, all ...
[in general this requires a dual, uniform by packet, version of
Knapp-Zuckerman decomposition of unitary principal series]
elliptic case: just Tate-Nakayama duality C/R

in general, don’t use duality with Sad but with extension, e.g. Ssc

so will write ∆(πs ,π;πs ,π′) = 〈π, ssc 〉 / 〈π′, ssc 〉:
pick base point π0 for Π and specify character ssc → 〈π0, ssc 〉 ,
then 〈π, ssc 〉 := ∆(πs ,π;πs ,π0) 〈π0, ssc 〉
... pairing of type proposed by Arthur for global picture [2007]
[better, new approach of Kaletha]

simpler case... Theorem: G of quasi-split type, Whittaker norm
of absolute ∆, π0 generic, trivial character ssc → 〈π0, ssc 〉 :
〈π, s〉 := ∆(πs ,π) gives perfect pairing ... Π as dual of Sad
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Structure on packets
b. inversion and a calculation

Corollary: invert transfer in Whittaker setting simply as

Trace π(f ) =
∣∣∣Sad ∣∣∣−1 ∑

s∈Sad

〈π, s〉 St-Trace πs (f s1 ) (11)

for all tempered π, test f and corresponding test f s1

now review some constructions, focus on Whittaker case,
and move to twisted setting ...
elliptic case, Whittaker setting: calculate 〈π, s〉?
G ∗ cuspidal, T anisotropic mod center, also TG ⊆ G
π = discrete series, π0 determines Weyl chamber(s) C0
yielding toral data for T in G ∗ and then well-defined character κ
on H1(Γ,T sc ); π determines chamber for TG ; inner twist carries
this chamber to C0 up to inner automorphism; make a well
defined element ω in H1(Γ,T sc ); finally, 〈π, s〉 = κ(ω)
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Structure on packets
c. twisted setting

remarks on last calculation:

(i) 〈π, s〉 is the absolute version of ∆III available in this setting
in general setting, there is a central obstruction to defining ω in H1

which is handled by going to relative version using a trick from
the original definition of geometric factors in [L-S]
[trick works for any pair T ,T ′ of maximal tori over local field F ...]
nonabelian variant for general elliptic u-regular case

(ii) it is easy to extend this type of calculation (for discrete series)
to the twisted setting using fundamental splittings
(Weyl chambers  fnd. splittings):

assume θ preserves fnd. splitting splf ; may assume inner twist η
transports splf to fnd. splitting spl∗f of G

∗ preserved by θ∗,
spl∗f provides toral data to transport objects from G∨...
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spl∗f provides toral data to transport objects from G∨...
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Structure on packets
cc. twisted setting (cont.)

Π = (θ,v)-stable packet of discrete series
fnd. splitting splπ for π in twist-packet Πθ,v is preserved by θ
up to inner automorphism η transports splπ to spl∗f
make Galois cocycle in this setting (relative in general)

cocycle almost takes values in θ∗-invariants; instead,
satisfies hypercocycle condition, so back to setting of
Kottwitz-Shelstad for geometric transfer factors

compatibility statement: introduce twisted version of S ,

work in G∨ o
〈
θ∨
〉
...

for nontrivial twisting character v, analysis exploits map
on endo data: ez → (ez )ad dual to Gsc → G
�
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