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Why restrict to K ?

G cplx ⊃ G(R) real reductive ⊃ K (R) maxl compact
Reps (π,Hπ) of G(R) are complicated and difficult.
Reps of K (R) are easy, so try two things:

understand π|K (R); and
use understanding to answer questions about π.

K (R) ⊂ G(R)! T ⊂ U, max torus in cpt Lie.

µ ∈ Û characterized by largest ξ(µ) in µ|T (Cartan-Weyl).

Can compute µ|T completely (Kostant).

When π|K (R) inf diml, can’t ask for largest piece. . .
. . . can define µ(π) as a smallest piece of π|K (R).
(sometimes) π characterized by µ(π) (Schmid)
In those cases, can compute π|K (R) (Schmid)
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Outline of talk

G(R) real reductive ⊃ K (R) max compact subgp.

Ex: G(R) = GL(n,C) = {invertible linear transf of Cn}
K (R) = U(n) = {linear transf respecting 〈, 〉}.

Ex: G(R) = GL(n,R) = {invertible linear transf of Rn}
K (R) = O(n) = {linear transf respecting 〈, 〉}.

Ex: G(R) = Sp(2n,R) = {R-lin transf of Cn resp. Im(〈, 〉)}
K (R) = U(n) = {C-linear maps in Sp(2n,R)}.

Plan for this talk:
1. Recall standard reps I(γ) of G(R) (Harish-Chandra)
2. Recall multiplicity calculation of I(γ)|K (R) (Schmid)
3. Recall (irred) = int comb (std reps) (Kazhdan-Lusztig)
4. geometric expression for irr reps restricted to K (R)
5. Open problems relating 1)–3) to 4).
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Example from Problem Session
G(R) = SL(2,C), K (R) = SU(2).

τ(m) = irr rep of K (R) of highest weight m.

I(m) = princ series rep IndG(R)
B(R) (reiθ 7→ eimθ)

= τ(m) + τ(m + 2) + τ(m + 4) · · · .
Freg(triv) = regular functions on N ∗θ

= τ(0) + τ(2) + τ(4) + · · ·
= I(0).

Freg(nontriv) = odd functions on double cover of N ∗θ
= τ(1) + τ(3) + τ(5) + · · ·
= I(1).

Fzero(m) = copy of τ(m) at 0 ∈ N ∗θ
= τ(m)

= I(m)− I(m + 2).

Lusztig Conjecture bijection picks largest term on left. . .

I(0)↔ (reg, triv), I(1)↔ (reg, nontriv), I(m)↔ (zero,m − 2).



Understanding
restriction to K

David Vogan

Introduction

Discrete series

Standard reps

Standard reps|K

Assoc varieties

Geom restr to K

Setting

G cplx conn reductive alg grp

cplx conj action σ︷ ︸︸ ︷
def over R  G(R)

σ0 cpt form s.t. σσ0 = σ0σ  θ =def σσ0 Cartan inv
K = Gθ cplx reductive alg, K (R) max cpt in G(R).

Πu(G(R)) = irr unitary reps/equiv: atoms of harm analysis

⊇

Π(G(R)) = irr quasisimple reps/infl equiv: analytic cont

'

Π(g,K ) = irr HC modules: Taylor series for qsimple reps

Π(K (R)) = Π(K ) = K̂ = irr reps of K (R) = irr alg of K

π ∈ Π(G(R)) mπ : K̂ → N, mπ(µ) = mult of µ in π|K .

Problem: compute and understand functions mπ.
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Schmid’s construction of discrete series
Discrete series reps Πds(G(R)) ⊂ Πu(G(R)

Discrete series are irr summands of L2(G(R)).
Harish-Chandra: exist iff G(R) ⊃ T (R) ⊂ K (R), cpt Cartan

Harish-Chandra: T̂ (R)reg/W (R)
≈←→ Πds(G(R)), λ→ I(λ)

B = complete flag variety of Borel subalgs b ⊂ g.

λ b(λ) ⊃ t X (λ) = G(R) · b(λ) ' G(R)/T (R) ⊂ B
⊆

Z (λ) = K (R) · b(λ) ' K (R)/T (R)

L(λ+ ρ)→ X (λ) holomorphic line bundle induced by λ+ ρ.

Kostant-Langlands: I(λ)
?
≈ Hs(X (λ),L(λ+ ρ)) (s = dim Z (λ)).

Probs: X (λ) noncpt; cohom not Hilbert space.

Schmid: Taylor exp of cohom along cpt subvar Z (λ).

I(λ)|K (R) ≈ Hs(Z (λ),L(λ+ ρ)⊗ S(g/(k + b(λ))︸ ︷︷ ︸
conorm to Z in X

)∗).
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Understanding Blattner

G(R) ⊃ K (R) ⊃ T (R), B = variety of Borel subalgs.

λ ∈ T̂ (R)reg  b−(λ) ⊃ t Borel subalgebra.

X (λ) = G(R) · b−(λ) ' G(R)/T (R) open G(R) orbit.

 finitely many G(R) orbits on B  reps by geom quant.

I(λ)|K (R) ≈ Hs(Z (λ),L(λ+ ρ)⊗ S(g/(k + b(λ)))∗).

Starts with lowest K -type Hs(K/(B ∩ K ),L(λ+ ρ)).

This is irr of highest weight µ(λ) = λ+ ρ− 2ρc︸︷︷︸
sum cpt pos

Borel-Weil-Bott-Kostant entire restriction I(λ)|K (R).

Thm (Schmid, Hecht-Schmid) Discrete series I(λ)
contains lowest K -type µ(λ) with mult 1; all others are
µ(λ) + (sum ncpt pos). These props characterize I(λ).
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Standard representations

G(R) ⊃ H(R), Cartan subgp. After conj θ-stable.
H(R) = T (R)︸ ︷︷ ︸

cpt

× A︸︷︷︸
vec gp

, cplxfication T = Hθ = H ∩ K .

T̂ (R) = X ∗(T ) = X ∗(H)/(1− θ)X ∗(H))︸ ︷︷ ︸
small if H ncpt

, Â = a∗.︸︷︷︸
big if H ncpt

Harish-Chandra: Ĥ(R)/W (R) Πstd (G(R)), γ → I(γ)

Need also Ψ = pos imag roots making λ dom.

γ = (λ, ν) ∈ T̂ (R)× Â
1. I(γ,Ψ) tempered ⇐⇒ γ unitary ⇐⇒ ν ∈ ia∗0
2. I(γ,Ψ)|K depends only on λ ∈ X ∗(T )

I(γ,Ψ)|K =def I(λ,Ψ) known: hard case disc series.



Understanding
restriction to K

David Vogan

Introduction

Discrete series

Standard reps

Standard reps|K

Assoc varieties

Geom restr to K

Basis for virtual reps

H(R) = T (R)× A, γ = (λ, ν) ∈ Ĥ(R), Ψ pos imag.

All I(γ,Ψ) lin ind unless 〈γ, α∨〉 = 0 (α ∈ Ψ simple). . .
. . . Hecht-Schmid character identities

1. α noncompact:
I(γα,Ψα)︸ ︷︷ ︸ =

{
I(γ,Ψ) + I(γ, sαΨ) sα /∈W (R)

I(γ,Ψ) sα ∈W (R).
spl Hα ⊂ SL(2)α

2. α compact: I(γ,Ψ) = 0.

(γ,Ψ) final if not on left of a Hecht-Schmid identity.

⇐⇒ @α real, 〈ν, α∨〉 = 0, λ(mα) = −1, and

@α compact simple in Ψ, 〈λ, α∨〉 = 0.

Thm (Langlands, Knapp-Zuckerman, Hecht-Schmid)
1. {I(γ,Ψ) | (γ,Ψ) final} basis for virtual reps of G(R).
2. {I(γ,Ψ) | (γ,Ψ) final, unitary} = Πtemp(G(R)).
3. I(γ,Ψ) has quotient rep J(γ,Ψ); irr if (γ,Ψ) final.
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Irreducibles and standards

P(G(R)) = {(γ,Ψ) final | γ ∈ Ĥ(R), Ψ pos imag}
Langlands parameters; write x ∈ P for (γ,Ψ).
I(x) standard rep� J(x) irr Langlands quotient.
P(G(R)) basis/Z[q,q−1] for Hecke alg module.
KL analysis Two kinds of KL polys in N[q]. . .

1. Qz,y (1) = mult of J(z) in I(y)

I(y) =
∑
z≤y

Qz,y (1)J(z).

2. Py,x (1) = (−1)`(x)−`(y)· (coeff of I(y) in char of J(x))
J(x) =

∑
y≤x

(−1)`(x)−`(y)Py,x (1)I(y).

(x , y , z in P(G(R)).
Consequence: computable branching law

J(x)|K =
∑
y≤x

(−1)`(x)−`(y)Py ,x (1)I(y)|K .
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Basis for restrictions to K
{I((λ, ν),Ψ)} are all the standard reps.
Restriction to K independent of continuous param ν.
Thm (How standard reps restrict to K .)

1. {I(λ,Ψ) | λ ∈ X∗(T ) final} basis for (virtual reps)|K .
2. I(λ,Ψ) has unique lowest K -type µ(λ,Ψ).
3. {temp, real infl char} ↔ {I(λ,Ψ) | λ ∈ X∗(T ) final} ↔ K̂

Ex: G = SL(2)× SL(2), K = SL(2)∆, torus = H × H
T = H∆  final params (temp reps SL(2,C), real infl). . .
{n | n ≥ 0}, I(n)|SL(2)∆

= {E(n),E(n + 2),E(n + 4) · · · }

Ex: G = SL(2), K = SO(2), Hc = K , Hs = (diag torus)
Tc = K , Ψhol , Ψahol ; Ts = {±I} final params. . .
{(n,Ψhol ) | n ≥ 0} on Tc ; {m,Ψahol | m ≤ 0} on Tc ; (triv) on Ts.

I(n,Ψhol )|SO(2) = {n + 1,n + 3,n + 5 · · · }
I(m,Ψahol )|SO(2) = {m − 1,m − 3,m − 5 · · · }

I(triv)|SO(2) = {0,±2,±4 · · · }
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Associated varieties

F(g,K ) category of finite length (g,K )-modules:
U(g)-module, alg action of K = Gθ.
gr
 C(g,K ) f.g. (S(g/k),K )-mods, supp ⊂ N ∗θ ⊂ (g/k)∗

N ∗ = {λ ∈ g∗ | p(λ) = 0 (p ∈ [gS(g)]G)} nilp cone
N ∗θ = N ∗ ∩ (g/k)∗, N ∗R = N ∗ ∩ ig(R)∗.
Prop (Kostant-Rallis, Sekiguchi)

1. K acts on N ∗
θ , fin # orbs, cplx Lag in G orbit.

2. G(R) acts on N ∗
R , fin # orbs, real Lag in G orbit.

3. Bij N ∗
θ /K ↔ N ∗

R/G(R), resp G orbit, diffeo type.

Prop gr induces surjection of Grothendieck groups

KF(g,K )
gr−→ KC(g,K );

image records restriction to K of HC module.
So restrictions to K of HC modules sit in interesting
category: coherent sheaves on nilp cone in (g/k)∗.
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gr for discrete series

Recall constr of disc ser reps starts with maxl torus T ⊂ K
(cplx alg), reg char λ ∈ X ∗(T )/W (K ,T ).

B = complete flag variety of Borel subalgs b ⊂ g.

λ b(λ) ⊃ t Z (λ) = K · b(λ) ' K/K ∩ B(λ) ⊂ B
L(λ+ ρ)→ B algebraic line bundle induced by λ+ ρ.

D-module picture: I(λ) = formal conormal derivatives of
hol secs of L(λ+ ρ) on closed K -orbit Z (λ) ⊂ B
Recall Schmid: Taylor exp along cpt subvar Z (λ):

I(λ)|K ≈ Hs(Z (λ),L(λ+ ρ)⊗ S( g/[k + b(λ)]︸ ︷︷ ︸
conorm to Z in X

)∗).

Serre duality, etc.  

gr I(λ) ' H0(Z (−λ),L(λ+ ρ− 2ρc)⊗ S (g/[k + b(−λ)])
)

' pullback of L(λ+ ρ− 2ρc) to T ∗
Z (−λ)B
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Conormal geometry
Recall B = {Borel subalgebras b ⊂ g} flag variety.

Deduce T ∗B = {(b, λ) | b ∈ B, λ ∈ [g/b]∗}.
Recall N ∗ = {λ ∈ g∗ | λ|b = 0, some b ∈ B}, nilp cone.

Get moment map
Springer resol

µ : T ∗B → N ∗, µ(b, λ) = λ.

affine T ∗B proper
π

↙
µ

↘
B N ∗

Recall N ∗
θ = N ∗ ∩ (g/k)∗, nilp cone in (g/k)∗.

Z = any K -orbit on B.
µ (T ∗

ZB) irr, K -stab so
dense in K -orb closure.

Surjection K\B � K\N ∗
θ .

Problem: understand corr.
GL(n): Robinson-Schensted.

T ∗B
π

↙
µ

↘

B

⊂

N ∗

⊂ T ∗
ZB ⊂

π

↙
µ

↘
Z N ∗

θ
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Associated varieties for standard reps

Recall gr I(λ) ' pullback of L(λ+ ρ− 2ρc) to T ∗
Z (−λ)B.

affine T ∗Z (−λ)B proper
π
↙

µ

↘
Z (−λ) N ∗θ

gr I(λ) ' µ∗π∗L(λ+ ρ−2ρc), coh sheaf on µ(T ∗Z (−λ)).

Similarly gr I(γ,Ψ) conorm geom K\N ∗θ .
Two bases for KC(g,K ):

Langlands
[
(λ,Ψ) final, λ char of Hθ

]
/K  gr I(λ,Ψ)

geometric orbit K · ξ ⊂ N ∗
θ , irr rep τ of K ξ  Γ [K ×Kξ Eτ ]

Prob 1: calculate chg-bas-mtrx; KL assoc var(irr).
Prob 2: understand chg-bas-mtrx; prove (nearly)
triang, (nearly) bijection between bases.
Problem 2 due to Lusztig in case G(R) complex; resolved
by Bezrukavnikov, Ostrik.
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Being guided through representation theory

mπ(λ)(µ) =
∑

w∈WK

ε(w)Pn([w(µ+ ρc)− ρc]− [λ+ ρ− 2ρc])
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