A problem in Euclidean Geometry

Michael Atiyah

I describe below an elementary problem in Euclidean (or Hyperbolic) geometry which remains unsolved more than 10 years after it was first formulated. There is a proof for $n=3$ and (when the ball is the whole of 3 -space) when $n=4$. There is strong numerical evidence for $n \leqslant 30$.
Let $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be n distinct points inside the ball of radius R in Euclidean 3 -space. Let the oriented line $x_{i} x_{j}$ meet the boundary 2 -sphere in a point $t_{i j}$ (regarded as a point of the complex Riemann sphere $(C \cup \infty)$). Form the complex polynomial p_{i}, of degree $n-1$, whose roots are $t_{i j}$: this is determined up to a scalar factor. The open problem is

Conjecture 1 For all $\left(x_{1}, \ldots, x_{n}\right)$ the n polynomials p_{i} are linearly independent.

Conjecture 1 is equivalent to the non-vanishing of the determinant D of the matrix of coefficients of the p_{i}. In fact there is a natural way of normalizing this determinant (independent of the choice of scalar factors) so that D becomes a continuous function of $\left(x_{1}, \ldots, x_{n}\right)$ which is $S L(2, C)$ - invariant (using the ball model of hyperbolic 3 -space) Conjecture 1 can now be refined to

Conjecture $2|D| \geq 1$ with equality only for collinear points.
There are other versions of this conjecture, of which the most appealing and general involves 2 ellipsoids S, S^{\prime} in 3 -space with S inside S^{\prime}. Replacing the 2 -sphere above by an ellipsoid and, taking a sequence of points x_{i} inside S, we get two determinants D, D^{\prime}. The third conjecture (which implies Conjecture 2) is

Conjecture $3\left|D^{\prime}\right|>|D|$
More details and background can be found in the references below (but Conjecture 3 is new).

References

- The Geometry of Classical Particles. In Surveys in differential geometry, 7 Cambridge MA, International Press 2001, 1-15.
- Equivariant Cohomology and Representations of the Symmetric Group, Chinese Ann. of Maths, 22B 2001, 23-50.
- Configurations of Points, Phil. Trans R.Soc. London A (2001), 359, 1375-1387.
- (with Paul Sutcliffe) The Geometry of Point Particles, Proc.Roy.Soc. London A (2002), 458, 1089-1115.
- (with Paul Sutcliffe) Polyhedra in Physics, Chemistry and Geometry. Milan J. Math. 7 (2003) 33-58.
- (with Roger Bielawski) Nahm's Equations, Configurations Spaces and Flag Manifolds. Bull.Braz.Math.Soc. New Series 33(2), 157-176.

