A problem in Euclidean Geometry

Michael Atiyah

I describe below an elementary problem in Euclidean (or Hyperbolic) geometry which remains unsolved more than 10 years after it was first formulated. There is a proof for n = 3 and (when the ball is the whole of 3-space) when n = 4. There is strong numerical evidence for $n \leq 30$.

Let $(x_1, x_2, ..., x_n)$ be *n* distinct points inside the ball of radius *R* in Euclidean 3-space. Let the oriented line $x_i x_j$ meet the boundary 2-sphere in a point t_{ij} (regarded as a point of the complex Riemann sphere $(C \cup \infty)$). Form the complex polynomial p_i , of degree n-1, whose roots are t_{ij} : this is determined up to a scalar factor. The open problem is

Conjecture 1 For all $(x_1, ..., x_n)$ the *n* polynomials p_i are linearly independent.

Conjecture 1 is equivalent to the non-vanishing of the determinant D of the matrix of coefficients of the p_i . In fact there is a natural way of normalizing this determinant (independent of the choice of scalar factors) so that D becomes a continuous function of $(x_1, ..., x_n)$ which is SL(2, C) - invariant (using the ball model of hyperbolic 3-space) Conjecture 1 can now be refined to

Conjecture 2 $|D| \ge 1$ with equality only for collinear points.

There are other versions of this conjecture, of which the most appealing and general involves 2 ellipsoids S, S' in 3-space with S inside S'. Replacing the 2-sphere above by an ellipsoid and, taking a sequence of points x_i inside S, we get two determinants D, D'. The third conjecture (which implies Conjecture 2) is

Conjecture 3 |D'| > |D|

More details and background can be found in the references below (but Conjecture 3 is new).

References

- The Geometry of Classical Particles. In Surveys in differential geometry, **7** Cambridge MA, International Press 2001, 1-15.
- Equivariant Cohomology and Representations of the Symmetric Group, Chinese Ann. of Maths, **22**B 2001, 23-50.
- Configurations of Points, Phil. Trans R.Soc. London A (2001), 359, 1375-1387.
- (with Paul Sutcliffe) The Geometry of Point Particles, Proc.Roy.Soc. London A (2002), 458, 1089-1115.
- (with Paul Sutcliffe) Polyhedra in Physics, Chemistry and Geometry. Milan J. Math. 7 (2003) 33-58.
- (with Roger Bielawski) Nahm's Equations, Configurations Spaces and Flag Manifolds. Bull.Braz.Math.Soc. New Series **33**(2), 157-176.