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Suppose G is a real reductive Lie group, with maximal compact subgroup
K. The representation theory of K is well-understood and well-behaved: K̂
is a countable discrete set consisting of finite-dimensional representations
(δ, Eδ). If (π, V ) is a quasisimple irreducible representation of G, Harish-
Chandra proved that each irreducible representation of K appears at most
finitely often in V ; so there is a multiplicity function

mV : K̂ → N, mV (δ) = dim HomK(Eδ, V ).

Here is one way to study these multiplicity functions.

Theorem 1. For every δ ∈ K̂, there is a unique tempered irreducible repre-
sentation I(δ) having real infinitesimal character, and unique lowest K-type
δ. The functions mI(δ) form a Z-basis of the span of the multiplicity func-
tions mV . That is, for any V there is an expression

mV =
∑
δ∈K̂

aV (δ)mI(δ),

with aV (δ) ∈ Z, and only finitely many aV (δ) not equal to zero.

This is based on Schmid’s results in [6]. A proof for linear G is in [7]. If
δ0 is a lowest K-type of V , then aV (δ0) = 1. The other terms in the sum
involve strictly “larger” δ, in the ordering of K̂ defining lowest. The Hecht-
Schmid proof of Blattner’s conjecture in [3] provides explicit formulas for the
functions mI(δ), and the Kazhdan-Lusztig conjectures allow us to calculate
the integers aV ; so this theorem makes it possible to compute all of the
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functions mV . Nevertheless we do not fully understand these functions; the
point of the problem below is to seek more geometric understanding.

Write K(C) and g for the complexifications of K and Lie(G). Write

N ∗θ = cone of nilpotent elements in (g/k)∗;

this is an affine algebraic variety on which K(C) acts with finitely many
orbits. If M is a K(C)-equivariant coherent sheaf on N ∗θ , then the space
ΓM decomposes as a direct sum of irreducible representations of K exactly
as we explained above for V ; so we get a multiplicity function

mM : K̂ → N, mM(δ) = dim HomK(Eδ,ΓM).

These multiplicity functions have a geometric character that is not evident in
the representation-theoretic ones mV . But they include the representation-
theoretic ones.

Proposition. Suppose V is an irreducible quasisimple representation of G.
Then there is K(C)-equivariant sheaf M(V ) on N ∗θ , with the property that
mV = mM(V ).

(This equality of multiplicity functions is a consequence of a much more
precise relationship between V and M(V ), examined in detail in [8].) Here
is a version of Theorem 1 for the geometric setting.

Theorem 2. Suppose O is an orbit of K(C) on N ∗θ , and L is an irreducible
K(C)-equivariant vector bundle on O. Let L be any equivariant coherent
sheaf on O that restricts to L. Then the multiplicity functions functions mL
form a Z-basis of the span of the multiplicity functions mM. That is, for
any K(C)-equivariant coherent sheaf M there is an expression

mM =
∑
L
aM(L)mL,

with aM(L) ∈ Z, and only finitely many aM(L) not equal to zero.

This is easy. If L0 is a bundle supported on a component O0 of the sup-
port of M, then the coefficient aM(L0) is a nonnegative integer independent
of all choices of coherent extensions. The other terms in the sum involve
lower-dimensional orbits in the support of M.

What has a little more content is

Proposition. The representation-theoretic multiplicity functions mV have
exactly the same span as the geometric ones mM. In particular, the two
bases {mI(δ)} and {mL} are related by integer change-of-basis matrices.
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Finally we can state a problem.

Open Problem. Describe as explicitly as possible a bijection between K̂
and the set of irreducible K(C)-equivariant bundles L, with the property
that the change-of-basis matrix between {mI(δ)} and {mL} is lower trian-

gular with respect to the ordering of K̂ defining lowest K-types. Give an
algorithm for computing this change-of-basis matrix.

For complex groups, a version of this problem was posed by Lusztig in
[4], and solved by Bezrukavnikov in [2]. The version here (with a more
explicit bijection) is due to Achar [1] in the case of GL(n,C). Earlier work
of Ostrik [5] is related.

For real groups, there are a number of additional difficulties. First, we
did not specify how to choose L; making the wrong choice will interfere
with lower triangularity. Second, the ordering defining lowest K-types is no
longer a total order, and a single irreducible representation can have more
than one lowest K-type. This difficulty partitions K̂ into finite subsets,
each with cardinality a small power of 2 (bounded by the split rank of G).
The precise desideratum is that each of these sets of representations δ should
correspond to a set of the same size of bundles L; the correspondence should
make the change-of-basis matrix block lower triangular.

Computing this change of basis matrix would in particular compute the
associated variety of any irreducible representation. This is an “asymptotic”
description of the restriction to K, providing a useful complement to the
complete and explicit formulas due to Hecht and Schmid.
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