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This problem is motivated by my joint work with Wilfried Schmid on constructing L-
functions via automorphic distributions (see [6–8]). An interesting – and poorly understood
– aspect of our method is the structure of its archimedean integrals. In every case examined
thus far, there is some change of coordinates that splits them into products of integrals of
the form

Gδ(s) :=

∫
R
e2πix sgn(x)δ dx = iδ

ΓR(s+ δ)

ΓR(1− s+ δ)
, δ ∈ {0, 1} , (1)

where ΓR(s) = π−s/2Γ( s
2
) is the factor that famously accompanies ζ(s) in its functional

equation. This identity is first proved by a contour shift when 0 < Re s < 1 (where it
conditionally converges), and then extends to s ∈ C by meromorphic continuation.

Despite the uniformity of the answers we obtain, the computations have been performed
by ad hoc combinatorial methods. I’d like to describe some examples here in the hopes that
an appropriate algebraic context can be found to explain them. For that reason all integrals
below will be expressed formally, without concern for convergence.

The first two examples are related to specific Γ-factor computations, while the last arose
in understanding the existence and uniqueness of Whittaker functions on the group GL(r,R).
Both have vague resemblances to formulas from cluster algebras in [3]. What is really going
on behind this, making it work?

Example 1: Rankin-Selberg tensor product on GL(r)×GL(r + 1).

Let N and N− be the subgroups of r × r unipotent upper and lower triangular matrices in
GL(r,R), respectively. Let ψ(n) = e2πi(n1,2+n2,3+···+nr−1,r) denote the standard nondegenerate
character of the unipotent subgroup N , where n = (ni,j) ∈ N . The boundary Whittaker
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distribution B = Br for parameters λ = (λ1, . . . , λr) ∈ Cr and δ = (δ1, . . . , δr) ∈ (Z/2Z)r is
the distribution on GL(r,R) characterized by the transformation law

B(ngtn−) = ψ(n)B(g)χρ−λ,δ(t) , (2)

where g ∈ GL(r,R), n ∈ N , t is diagonal, n− ∈ N−, ρ = ( r−1
2
, r−3

2
, . . . , 1−r

2
), and

χρ−λ,δ(diag(t1, . . . , tr)) =
∏
i≤ r

|ti|ρi−λi sgn(ti)
δi .

This formula completely describes B(ntn−) = ψ(n)χρ−λ,δ(t) on the open Bruhat cell of G,
where it actually restricts to a function.

Consider the embedding j : GL(r,R) ↪→ GL(r + 1,R) into the upper left corner of
(r+ 1)× (r+ 1) matrices. It has an open orbit on the product of flag varieties for these two
groups. Let f1 ∈ GL(r,R) and f2 ∈ GL(r + 1,R) be an arbitrary point in this orbit. The
distributional archimedean integral that arises for the GL(r) × GL(r + 1) Rankin-Selberg
convolution is (analogously to [4])∫

B−,r

Br(b−f1)Br+1(j(b−)f2) | det b−|s , (3)

where B−,r represents the lower triangular Borel subgroup of GL(r). After a rational change

of coordinates on B−,r, (3) formally splits into a product of r(r+1)
2

integrals of the form (1).
This gives half of the Γ-factors in the functional equation, the other half coming from the
opposite side of the functional equation.

Since it is a bit lengthy to describe this coordinate change in general, we illustrate it here

for some low rank cases, starting with r = 3. Write b− =
(
a 0 0
b c 0
d e f

)
and take f1 = I3, f2 =(

0 0 1 1
0 1 0 1
1 0 0 1
0 0 0 1

)
. For simplicity assume that δ = (0, 0, . . . , 0) (which does not change the difficulty

of the calculation). Then B3(b−f1) = |a|3/2−λ1|c|1/2−λ2|f |−1/2−λ3 . The factor involving B4 is

B4

(
0 0 a a
0 c b b+c
f e d d+e+f
0 0 0 1

)
= e2πi(d+e+f)B4

(
0 0 a 0
0 c b 0
f e d 0
0 0 0 1

)
= e2πi(d+e+f)B4

( acf
be−cd

−ae
d

a a

0 c− be
d
b b+c

0 0 d d+e+f
0 0 0 1

)
(4)

by (2) (using an LU decomposition). This can be written as an explicit product involving
powers of the diagonal entries, and an exponential of the sum of the ratio of each superdiag-
onal entry divided by the diagonal entry immediately beneath it. The successive changes of
variables b 7→ b+ cd/e, a 7→ ab, b 7→ bd, c 7→ ce then converts the integral into a product of 6
Gδ-integrals from (1).

For r = 4, f1 = I4 while f2 =

(
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 1

)
. Writing b− =

(
a 0 0 0
b c 0 0
d e f 0
g h i j

)
, in this case the

changes of variables are b 7→ b + cfg−cdi
fh−ei , d 7→ d + eg/h, e 7→ e + fh/i, followed by a 7→ ab,

b 7→ bd, c 7→ ce, d 7→ dg, e 7→ eh, f 7→ fi.
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Notice that the addition by shifts serves to simplify determinants of minors in b− into

monomials. For example, the first change of variables for r = 4 simplifies det
(
b c 0
d e f
g h i

)
to

b · det
(
e f
h i

)
, while the other shifts do something simpler for 2 × 2 determinants. The last

phase involves multiplying each variable by the one immediately below it in the matrix, in a
certain sequence. In general, the change of variables goes through the matrix in a particular
order, and changes an entry in a manner in which simplifies some of the minors of the matrix.
It then proceeds to change other entries, sometimes affecting ones which have already been
altered.

Example 2: Exterior Square L-function on GL(2r).

This example is taken from our paper [8, §4], which gives a general description of a coordinate
change for matrices such as

c1,1 0 0 0 0 c1,1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c1,1
c2,1 c2,2 0 0 0 c2,1+c2,2 0 0 0 0 z1,1
0 0 0 0 0 0 0 0 0 c2,2 c2,1
c3,1 c3,2 c3,3 0 0 c3,1+c3,2+c3,3 0 0 0 z2,2 z2,1
0 0 0 0 0 0 0 0 c3,3 c3,2 c3,1
c4,1 c4,2 c4,3 c4,4 0 c4,1+c4,2+c4,3+c4,4 0 0 z3,3 z3,2 z3,1
0 0 0 0 0 0 0 c4,4 c4,3 c4,2 c4,1
c5,1 c5,2 c5,3 c5,4 c5,5 c5,1+c5,2+c5,3+c5,4+c5,5 0 z4,4 z4,3 z4,2 z4,1
0 0 0 0 0 0 c5,5 c5,4 c5,3 c5,2 c5,1
0 0 0 0 0 1 z5,5 z5,4 z5,3 z5,2 z5,1


.

The goal here is again to factor this matrix as ntn− for n ∈ N , t diagonal, and n− ∈ N−,
with an accompanying change of variables so that the superdiagonal entries in n as well
as the entries of t have simple forms. This allows for the computation of Γ-factors for the
exterior square L-functions.

Various shifts of variables are performed on the zi,j and then the ci,j in order to convert
various minors into monomials of the variables. In this particular situation, the determi-
nant of the bottom-right 9× 9 block can be expanded by minors as z1,1∆1 + (c2,1 + c2,2)∆2,
where ∆1 and ∆2 are determinants of subblocks. We change variables z1,1 7→ z1,1 − (c2,1 +
c2,2)∆2/∆1, so that the determinant of this 9× 9 block simplifies to z1,1∆1. Similar changes
of variables are done in turn for the square blocks whose bottom row is the bottom row
of the matrix, and whose top right corner is z2,1, z2,2, z3,1, z3,2, z3,3, z4,1, z4,2, z4,3, and z4,4
(in this order). After this is complete, similar changes of variables are then made for
c5,1, c5,2, c5,3, c5,4, c4,1, c4,2, c4,3, c3,1, c3,2, and c2,1, in order. Note that adjusting the ci,j’s al-
ters the previously-changed zi,j in the process. The order here is different than in the
Rankin-Selberg example, though ultimately for the same purpose of simplifying an integral.

Other distributional pairings give integrals which can also be calculated in terms of
similar shifts. For example, Janet Chen’s Ph.D. thesis [2] works out an integral on Sp(4),
while Brandon Bate’s Ph.D. [1] thesis works out one on the exceptional group G2.
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Example 3: Existence and uniqueness of Whittaker functions.

This last example originally arose in a different application, though it shares some similarities
with the previous two examples. It concerns the algebraic geometry of Schubert cells for
GL(r,R). The change of variables described below gives a desingularization of the largest
Schubert cell, from which a very short proof of the existence and uniqueness of Whittaker
functions (originally due to [9,10]) can be given using our notion of a distribution vanishing
to infinite order [5].

Consider the following ordering on the coordinates ni,j of matrices n ∈ N ,

O : (1, 2) � (2, 3) � (1, 3) � (3, 4) � (2, 4) � (1, 4) � (4, 5) � · · · , (5)

which is the lexicographic order on the pair (−j, i) (this is not the same notion as the
lexicographic ordering of a root system from Lie theory). We extend O in the obvious way
to the positive roots α of G, corresponding to the coordinates ni,j. Let B− ⊂ GL(r,R) be
the subgroup of lower triangular matrices, and let wlong be the long Weyl group element,
realized as the n× n identity matrix with its columns reversed.

Theorem 6. (Miller-Schmid, 2008) There exists a birational map R

{(ui,j) | 1 ≤ i < j ≤ r} R−→ {(ni,j) | 1 ≤ i < j ≤ r}

such that

(i) R is smooth, of maximal rank, on (R∗)d, where d = dim(N) = r(r−1)
2

(ii) via R, the element in the (i, i + 1)-st position in the projection of wlongnB− onto N
modulo B− corresponds to

∑r−i
k=1

1
uk,i+k

(iii) via R, the invariant measure
∏

1≤i<j≤r dni,j on N corresponds to
∏

1≤i<j≤r u
j−i−1dui,j

(iv) via R, the zero sets of the functions
∏

i≤k<j ui,j, 1 ≤ k ≤ r−1, define the codimension-
one Schubert cells of G.

This birational map R is defined in terms of the entries of the matrix

wn =


1

1 nr−1,r

1 nr−2,r−1 nr−2,r

. .
.
. .
. ...

...
1 n2,3 ··· n2,r−1 n2,r

1 n1,2 n1,3 ··· n1,r−1 n1,r

. (7)

For each entry nα = ni,j, i < j, in this matrix, let Pα = Pi,j denote the set of rectilinear
paths through its entries which begin at ni,r and end at either nj−1,j or nj,j+1, and which
move only in upward and leftward steps as they pass through the matrix. For any such
path p through the matrix wn, let u(p) denote the product of uγ, over all γ for which nγ is
traversed by the path. The explicit formula for the rational map is given as follows:

ni,j =

∑
p∈Pi,j

u(p)

uj,j+1uj,j+2 · · ·uj,r
. (8)
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For example, for r = 3 the matrix wn corresponds under R to 0 0 1
0 1 u2,3
1 u1,3u1,2+u1,3u2,3

u2,3
u1,3 u2,3

, (9)

while for r = 4 it corresponds to
0 0 0 1
0 0 1 u3,4
0 1 u2,4(u2,3+u3,4)

u3,4
u2,4 u3,4

1 u1,4(u1,2u1,3+u1,3u2,3+u2,3u2,4)

u2,3u2,4

u1,4(u1,3u2,3+u2,3u2,4+u2,4u3,4)

u3,4
u1,4 u2,4 u3,4

. (10)

The entries in the rightmost column always come from the sole path going straight up,
meaning

ni,r =
∏
j≥i

uj,r. (11)

This change of variables is a special case of a more general one that applies to any Schubert
cell of GL(r).

To conclude: what mathematics is behind these paths and changes of variables?
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