Tautological classes on the moduli space of K3 surfaces

Alina Marian

We denote by \mathcal{K}_{ℓ} the moduli stack of quasipolarized K3 surfaces (X, H) of degree $H^2 = 2\ell$, and let

$$\pi: \mathcal{X} \to \mathcal{K}_{\ell}$$

be the universal surface, equipped with the universal quasipolarization $\mathcal{H} \to \mathcal{X}$.

The Hodge line bundle

$$V = \left(R^2 \pi_\star \mathcal{O}_\mathcal{X}\right)^{-1}$$

gives rise to a natural divisor class

$$\lambda = c_1(V),$$

generating a subring $\langle \lambda \rangle \subset A^{\star}(\mathcal{K}_{\ell})$ in the Chow of \mathcal{K}_{ℓ} . In [GK], the authors consider the Chern classes $c_1 = \pi^{\star}\lambda$ and c_2 of the relative cotangent bundle $\Omega^1_{\mathcal{X}/\mathcal{K}_{\ell}}$, and calculate that

$$\pi_{\star} c_2^m \in \langle \lambda \rangle$$
, for all m .

Beyond the universal surface \mathcal{X} , we may contemplate more general geometric structures over \mathcal{K}_{ℓ} , and could ask: do they give rise to new natural classes in the Chow ring of \mathcal{K}_{ℓ} or does the λ -ring entirely capture the tautological cycle structure of \mathcal{K}_{ℓ} ?

As a concrete example, for a fixed integer n, we consider the relative Hilbert scheme of n points

$$\pi: \mathcal{X}^{[n]} \to \mathcal{K}_{\ell}.$$

(For simplicity we let π denote the projection to \mathcal{K}_{ℓ} in all considered contexts.) We let $\mathbb{D} \subset \mathcal{X}^{[n]}$ be the natural diagonal divisor of subschemes whose support points are not all distinct. In other words, fiberwise over a quasipolarized (X, H), \mathbb{D} consists of the length n zero-dimensional subschemes of X supported at at most n-1 distinct points of X. We let $\delta \in A^1(\mathcal{X}^{[n]})$ be the corresponding Chow class, and ask

Question 1. Are the pushforwards $\pi_{\star} \delta^m$ for m > 2n in the λ -ring?

The Hilbert scheme can be viewed as the relative moduli stack of rank 1 torsion free sheaves of trivial determinant and second Chern number -n. More generally, it is natural to consider spaces of higher rank sheaves on a K3, as the surface varies in moduli. We restrict attention to the open substack $\mathcal{K}_{\ell}^{\circ} \subset \mathcal{K}_{\ell}$ where the line bundle \mathcal{H} over the universal surface is ample, and construct

$$M[v] \to \mathcal{K}_{\ell}^{\circ}$$

the moduli space of \mathcal{H} -semistable sheaves with rank r, determinant $d\mathcal{H}$ and Euler characteristic a-r over the fibers of $\pi : \mathcal{X}^{\circ} \to \mathcal{K}^{\circ}_{\ell}$. Over a fixed polarized K3 surface (X, H), the moduli space consists of sheaves F with Mukai vector

$$v(F) = \operatorname{ch} F \sqrt{\operatorname{todd} X} = r + dH + a[\operatorname{pt}] \in H^{\star}(X, \mathbb{Z}).$$

We may consider an additional Mukai vector $w = s + eH + b[pt] \in H^*(X, \mathbb{Z})$, complementary in the sense that

$$\chi(v \cdot w) = 0 \text{ on } X.$$

We form the second relative moduli space $M[w] \to \mathcal{K}_{\ell}^{\circ}$, and note that the product

$$\pi: M[v] \times_{\mathcal{K}^{\circ}_{\ell}} M[w] \to \mathcal{K}^{\circ}_{\ell}$$

comes endowed with a canonical Brill-Noether locus

(1)
$$\{(X, H, E, F) \text{ so that } \mathbb{H}^0(X, E \otimes^{\mathbf{L}} F) \neq 0\} \subset M[v] \times_{\mathcal{K}^0_{\ell}} M[w],$$

which is expected divisorial. The corresponding line bundle $\Theta \to M[v] \times_{\mathcal{K}^{\circ}_{\ell}} M[w]$ is in any case always defined. We ask

Question 2. Is the Chern character $ch(\mathbf{R}\pi_{\star}\Theta)$ in the ring generated by the Hodge class $\lambda = -c_1(R^2\pi_{\star}\mathcal{O}_{\mathcal{X}^{\circ}})$?

References

[GK] G. van der Geer, T. Katsura, Note on tautological classes of moduli of K3 surfaces, Mosc. Math. J. 5 (2005), 775 – 779.