Mathematics Xb. Introduction to Functions and Calculus II
Catalog Number: 3857 Enrollment: Normally limited to 15 students per section.
Angela G. Vierling-Claassen, Bret J. Benesh, and members of the Department
Half course (spring term). Section I: M., W., F., at 10; Section II: M. W., F., at 11; Section III: M., W., F., at 12 (with sufficient enrollment); and a twice weekly lab session to be arranged. EXAM GROUP: 3
Continued investigation of functions and differential calculus through modeling; an introduction to integration with applications; an introduction to differential equations. Solid preparation for Mathematics 1b.
Note: This course, when taken for a letter grade together with Mathematics Xa, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics Xa.
Mathematics 1a. Introduction to Calculus
Catalog Number: 8434 Enrollment: Normally limited to 30 students per section.
Thomas W. Judson, Bret J. Benesh, Robin Gottlieb (fall term), and David J. Pollack (spring term)
Half course (fall term; repeated spring term). Fall: Section I, M., W., F., at 9 (with sufficient enrollment); Section II, M., W., F., at 10; Section III, M., W., F., at 11; Section IV, M., W., F., at 12; Section V, Tu., Th., 1011:30; Section Vl, Tu., Th., 11:301. Spring: Section I, M., W., F., at 10; Section II, Tu.Th. 10-11:30 (with sufficient enrollment) and a weekly problem section to be arranged. EXAM GROUP: 1
The development of calculus by Newton and Leibniz ranks among the greatest achievements of the past millennium. This course will help you see why by introducing: how differential calculus treats rates of change; how integral calculus treats accumulation; and how the fundamental theorem of calculus links the two. These ideas will be applied to optimization, graphing, mechanisms, and problems from many other disciplines.
Note: Required first meeting in fall: Tuesday, September 20, 8:30 am, Science Center D. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: A solid background in precalculus.
Mathematics 1b. Calculus, Series, and Differential Equations
Catalog Number: 1804 Enrollment: Normally limited to 30 students per section.
Matthew P. Leingang and Angela G. Vierling-Claassen (fall term); Thomas W. Judson, Robin Gottlieb, and Robert M. Strain (spring term)
Half course (fall term; repeated spring term). Section I, M., W., F., at 9 (with sufficient enrollment); Section II, M., W., F., at 10; Section III, M., W., F., at 11; Section IV, M., W., F., at 12 (with sufficient enrollment); Section V: Tu., Th., 1011:30; Section Vl, Tu., Th., 11:301, and a weekly problem section to be arranged. First meeting, spring: W., Feb 1, 8:30 am, Science Center A. EXAM GROUP: Fall: 1; Spring: 2
Speaking the language of modern mathematics requires fluency with the topics of this course: infinite series, integration, and differential equations. Model practical situations using integrals and differential equations. Learn how to represent interesting functions using series and find qualitative, numerical, and analytic ways of studying differential equations. Develop both conceptual understanding and the ability to apply it.
Note: Required first meeting in fall: Monday, September 19, 8:30 am, Science Center C. Required first meeting in spring: Wednesday, February 1, 8:30 am, Science Center A. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 1a, or Xa and Xb, or equivalent.
Mathematics 19. Mathematical Modeling
Catalog Number: 1256
Thomas W. Judson
Half course (fall term). M., W., F., at 1, and a weekly problem section to be arranged. EXAM GROUP: 6
Considers the construction and analysis of mathematical models that arise in the environmental sciences, biology, the ecological sciences, and in earth and atmospheric sciences. Introduces mathematics that include multivariable calculus, differential equations in one or more variables, vectors, matrices, and linear and non-linear dynamical systems. Taught via examples from current literature (both good and bad).
Note: Can be taken with or without Mathematics 21a,b. Students with interests in the social sciences and economics might consider Mathematics 20. This course can be taken before or after Mathematics 20. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Mathematics 20. Introduction to Linear Algebra and Multivariable Calculus
Catalog Number: 0906
Matthew P. Leingang
Half course (fall term; repeated spring term). M., W., F., at 10, and a weekly problem section to be arranged. EXAM GROUP: 3
Introduction to linear algebra, including vectors, matrices, and applications. Calculus of functions of several variables, including partial derivatives, constrained and unconstrained optimization, and applications. Covers the topics from Mathematics 21a,b which are most important in applications to economics, the social sciences, and some other fields.
Note: Should not ordinarily be taken in addition to Mathematics 21a,b. Examples drawn primarily from economics and the social sciences though Mathematics 20 may be useful to students in certain natural sciences. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 1b or equivalent, or an A or A- in Mathematics 1a, or a 5 on the AB or a 3 or higher on the BC Advanced Placement Examinations in Mathematics.
Mathematics 21a. Multivariable Calculus
Catalog Number: 6760 Enrollment: Normally limited to 30 students per section.
Oliver Knill, Paul G. Bamberg, and Thomas Lam (fall term); Oliver Knill, Matthew P. Leingang, Veronique Godin, Joachim Krieger, and Thomas Lam (spring term)
Half course (fall term; repeated spring term). Fall: Section I, M., W., F., at 9 (with sufficient enrollment); Section II, M., W., F., at 10; Section III, M., W., F., at 11; Section IV, M., W., F., at 12; Section V, Tu., Th., 1011:30; Section VI, Tu., Th., 11:301; and a weekly problem section to be arranged. First meeting, spring: W., Feb 1, 8:30 am, Science Center C . EXAM GROUP: Fall: 1; Spring: 2
To see how calculus applies in practical situations described by more than one variable, we study: Vectors, lines, planes, parameterization of curves and surfaces, partial derivatives, directional derivatives, and the gradient, optimization and critical point analysis, including constrained optimization and the Method of Lagrange Multipliers, integration over curves, surfaces, and solid regions using Cartesian, polar, cylindrical, and spherical coordinates, divergence and curl of vector fields, and the Greens, Stokes, and Divergence Theorems.
Note: Required first meeting in fall: Tuesday, September 20, 8:30 am, Science Center C. Required first meeting in spring: Wednesday, February 1, 8:30 am, Science Center C. May not be taken for credit by students who have passed Applied Mathematics 21a. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Activities using computers to calculate and visualize applications of these ideas will not require previous programming experience. Special sections for students interested in physics or biochemistry and social sciences are offered each term. The biochemistry/social sciences sections treat topics in probability and statistics in lieu of Greens, Stokes and the Divergence Theorems.
Prerequisite: Mathematics 1b or equivalent.
Mathematics 21b. Linear Algebra and Differential Equations
Catalog Number: 1771 Enrollment: Normally limited to 30 students per section.
Andreea C. Nicoara (fall term); Clifford Taubes, Angela G. Vierling-Claassen, and Ilia Zharkov (spring term)
Half course (fall term; repeated spring term). Fall: Section I: M., W., F., at 10; Section II: M., W., F., at 11; Spring: Section I: M., W., F., at 10; Section II: M., W., F., at 11; Section III: M., W., F., at 12 (with sufficient enrollment); Section IV: Tu., Th., 1011:30; Section V: Tu., Th., 11:301 and a weekly problem section to be arranged. First Meeting, spring: W., Feb 1, 8:30 am, Science Center D. EXAM GROUP: Fall: 1; Spring: 3
Matrices provide the algebraic structure for solving myriad problems across the sciences. We study matrices and related topics such as vectors, Euclidean spaces, linear transformations, determinants, eigenvalues, and eigenvectors. Of applications given, a regular section considers dynamical systems and both ordinary and partial differential equations. Accompanying an introduction to statistical techniques, applications from biology and other data-rich sciences are presented in a biology and statistics section.
Note: Required first meeting in fall: Monday, September 19, 8:30 am, Science Center A. Required first meeting in spring: Wednesday, February 1, 8:30 am, Science Center D. May not be taken for credit by students who have passed Applied Mathematics 21b. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics lb or equivalent. Mathematics 21a is commonly taken before Mathematics 21b, but is not a prerequisite, although familiarity with partial derivatives is useful.
Mathematics 23a. Theoretical Linear Algebra and Multivariable Calculus I
Catalog Number: 2486
Alberto De Sole
Half course (fall term). M., W., F., at 11, and a weekly conference section to be arranged. EXAM GROUP: 4
A rigorous treatment of linear algebra and the calculus of functions of n real variables. Topics include: Construction of number systems, fields; vector spaces and linear transformations, eigenvalues and eigenvectors, multilinear forms, and determinants; elementary topology of Euclidean space, inner products, and norms; differentiation and integration of functions of several real variables, the classical theorems of vector analysis.
Note: Mathematics 23a, b are honors courses, specifically designed for students with strong mathematics backgrounds who are seriously interested in continuing in the theoretical sciences. See the description in the introductory paragraphs in the Mathematics section of the catalog. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 1b or a grade of 4 or 5 on the Calculus BC Advanced Placement Examination. Mathematics 23 goes well beyond the concepts strictly necessary for Physics 15, which are more closely correlated with Mathematics 21.
Mathematics 23b. Theoretical Linear Algebra and Multivariable Calculus II
Catalog Number: 8571
Alberto De Sole
Half course (spring term). M., W., F., at 11, and a weekly conference section to be arranged. EXAM GROUP: 4
Continuation of the subject matter of Mathematics 23a.
Note: This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 23a.
Mathematics 25a. Honors Multivariable Calculus and Linear Algebra
Catalog Number: 1525
Elizabeth Denne
Half course (fall term). M., W., F., at 10. EXAM GROUP: 3
A rigorous treatment of linear algebra, point-set and metric topology, and the calculus of functions in n variables. Emphasis placed on careful reasoning, and on learning to understand and construct proofs.
Note: Only for students with a strong interest and background in mathematics. May not be taken for credit after Mathematics 23. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: A 5 on the Advanced Placement BC-Calculus Examination, or the equivalent as determined by the instructor.
Mathematics 25b. Honors Multivariable Calculus and Linear Algebra
Catalog Number: 1590
Elizabeth Denne
Half course (spring term). M., W., F., at 10. EXAM GROUP: 3
A continuation of Mathematics 25a. More advanced topics, such as Fourier analysis, differential forms, and differential geometry, will be introduced as time permits.
Note: This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 25a or permission of instructor.
*Mathematics 55a. Honors Advanced Calculus and Linear Algebra
Catalog Number: 4068
Noam D. Elkies
Half course (fall term). M., W., F., at 11. EXAM GROUP: 4
A rigorous treatment of metric and general topology, linear and multi-linear algebra, differential and integral calculus.
Note: Mathematics 55a is an intense course for students having significant experience with abstract mathematics. Instructors permission required. Every effort will be made to accommodate students uncertain of whether the course is appropriate for them; in particular, Mathematics 55a and 25a will be closely coordinated for the first three weeks of instruction. Students can switch between the two courses during the first three weeks without penalty. This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Mathematics 55b. Honors Advanced Calculus and Linear Algebra
Catalog Number: 3312
Yum Tong Siu
Half course (spring term). M., W., F., at 10. EXAM GROUP: 3
Continuation of Mathematics 55a. Calculus of functions of several variables. More advanced topics selected from functional analysis, Fourier analysis, differential equations, and differential geometry.
Note: This course, when taken for a letter grade, meets the Core area requirement for Quantitative Reasoning.
Prerequisite: Mathematics 55a or permission of instructor.
*Mathematics 60r. Reading Course for Senior Honors Candidates
Catalog Number: 8500
Peter B. Kronheimer
Half course (fall term; repeated spring term). Hours to be arranged.
Advanced reading in topics not covered in courses.
Note: Limited to candidates for honors in Mathematics who obtain the permission of both the faculty member under whom they want to work and the Director of Undergraduate Studies. May not count for concentration in Mathematics without special permission from the Director of Undergraduate Studies. Graded Sat/Unsat only.
*Mathematics 91r. Supervised Reading and Research
Catalog Number: 2165
Peter B. Kronheimer
Half course (fall term; repeated spring term). Hours to be arranged.
Programs of directed study supervised by a person approved by the Department.
Note: May not ordinarily count for concentration in Mathematics.
*Mathematics 99r. Tutorial
Catalog Number: 6024
Peter B. Kronheimer and members of the Department
Half course (fall term; repeated spring term). Hours to be arranged.
Topics for 2005-06: Holomorphic Vector Bundles on Algebraic Curves (fall), prerequisite: basic complex analysis and elementary ideas from differential geometry. (2) Binary Quadratic Forms (fall), prerequisite: complex analysis (Math 113) and algebra (Math 122, 123). (3) Height Functions in Arithmetic Geometry (spring), prerequisite: Math 122, 123, and basic algebraic number theory. (4) Sphere Packings (spring), prerequisite: Math 112.
Note: May be repeated for course credit with permission from the Director of Undergraduate Studies. Only one tutorial may count for concentration credit.
Mathematics 106. Ordinary Differential Equations
Catalog Number: 3377
Thomas W. Judson
Half course (spring term). M., W., F., at 1. EXAM GROUP: 6
Analytic, numerical, and qualitative analysis of ordinary differential equations. Linear equations, linear and non-linear systems. Applications to mechanics, biology, physics, and the social sciences. Existence and uniqueness of solutions and visual analysis using computer graphics. Topics selected from Laplace transforms, power series solutions, chaos, and numerical solutions.
Prerequisite: Mathematics 19, 20 or 21a.
Mathematics 112. Real Analysis
Catalog Number: 1123
Robert M. Strain
Half course (spring term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
An introduction to mathematical analysis and the theory behind calculus. An emphasis on learning to understand and construct proofs. Covers limits and continuity in metric spaces, uniform convergence and spaces of functions, the Riemann integral, sets of measure zero and conditions for integrability.
Prerequisite: Mathematics 21a,b or 23a,b, and either an ability to write proofs or concurrent enrollment in Mathematics 101. Should not ordinarily be taken in addition to Mathematics 25a,b or 55a,b.
Mathematics 113. Complex Analysis
Catalog Number: 0405
Andreea C. Nicoara
Half course (spring term). M., W., F., at 11. EXAM GROUP: 4
Analytic functions of one complex variable: power series expansions, contour integrals, Cauchys theorem, Laurent series and the residue theorem. Some applications to real analysis, including the evaluation of indefinite integrals. An introduction to some special functions.
Prerequisite: Mathematics 23a,b, 25a,b, or 101. Students with an A grade in Mathematics 21a,b may also consider taking this course, but must understand proofs.
Mathematics 115. Methods of Analysis and Applications
Catalog Number: 1871
Joachim Krieger
Half course (fall term). M., W., F., at 1. EXAM GROUP: 6
Some complex function theory; Fourier analysis; Hilbert spaces and operators; Laplaces equations; Bessel and Legendre functions; symmetries; and Sturm-Liouville theory.
Note: Mathematics 115 is especially for students interested in physics.
Prerequisite: Mathematics 21a,b, 23a,b, or 25a,b, and permission of instructor.
[Mathematics 116. Convexity and Optimization with Applications]
Catalog Number: 5253
----------
Half course (spring term). Hours to be arranged.
Introduction to real and functional analysis through topics such as convex programming, duality theory, linear and non-linear programming, calculus of variations, and the maximum principle of optimal control theory.
Note: Expected to be given in 200607.
Prerequisite: At least one course beyond Mathematics 21.
Mathematics 117. Topics in Analysis
Catalog Number: 0630
Horng-Tzer Yau
Half course (spring term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Sobolev space and logarithmic Sobolev inequalities. Schrodinger equation and semiclassical limit. Introduction to Bose-Einstein condensation and nonlinear Schrodinger equation.
Prerequisite: Math 112 or permission of the instructor.
[Mathematics 118r. Dynamical Systems]
Catalog Number: 6402
----------
Half course (spring term). Hours to be arranged.
A mathematical introduction to nonlinear dynamical system theory and its applications. Topics include concepts on the iteration of maps and the integration of flows, bifurcation theory, the role of equilibrium points, invariant manifolds, and attractors. Applications include examples from celestial mechanics, geometry or statistical mechanics or number theory. Computer demonstrations in class are used to visualize and understand the concepts and will encourage experimentation.
Note: Expected to be given in 200607.
Prerequisite: Multi-variable calculus as well as linear algebra.
Mathematics 119. Partial Differential Equations and Applications
Catalog Number: 7326
Robert M. Strain
Half course (fall term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
Partial differential equations with constant coefficients, hyperbolic elliptic, and parabolic equations, Fourier analysis, Greens function.
Prerequisite: Familiarity with functions of a complex variable.
Mathematics 121. Linear Algebra and Applications
Catalog Number: 7009
Joachim Krieger
Half course (fall term). M., W., F., at 11. EXAM GROUP: 4
Real and complex vector spaces, dual spaces, linear transformations and Jordan normal forms. Inner product spaces. Applications to differential equations, classical mechanics, and optimization theory. Emphasizes learning to understand and write proofs.
Prerequisite: Mathematics 21a,b or equivalent. Should not ordinarily be taken in addition to Mathematics 23a,b, 25a,b, or 55a,b.
Mathematics 122. Abstract Algebra I: Theory of Groups and Vector Spaces
Catalog Number: 7855
Benedict H. Gross
Half course (fall term). M., W., F., at 10. EXAM GROUP: 3
Algebra is the language of modern mathematics. Provides an introduction to this language, through the study of groups and group actions, vector spaces and their linear transformations, and some general theory of rings and fields.
Prerequisite: Mathematics 21b, or the equivalent training in matrices and linear algebra.
Mathematics 123. Abstract Algebra II: Theory of Rings and Fields
Catalog Number: 5613
Véronique Godin
Half course (spring term). M., W., F., at 10. EXAM GROUP: 3
Bilinear forms and group representations. Field extensions and the basic theorems of Galois theory. Structure theorems for modules.
Prerequisite: Mathematics 122.
Mathematics 124. Number Theory
Catalog Number: 2398
Véronique Godin
Half course (fall term). M., W., F., at 11. EXAM GROUP: 4
Factorization and the primes; congruences; quadratic residues and reciprocity; continued fractions and approximations; Pells equation; selected Diophantine equations; theory of integral quadratic forms.
Prerequisite: Mathematics 122 (which may be taken concurrently) or equivalent.
Mathematics 126. Representation Theory and Applications
Catalog Number: 0369
Wilfried Schmid
Half course (fall term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
Representation theory of finite groups including character theory, induced representations, Frobenius reciprocity, and interesting applications.
[Mathematics 128. Lie Algebras]
Catalog Number: 6519
----------
Half course (spring term). Hours to be arranged.
Definition of Lie algebras, examples, Poincare-Birkhoff-Witt theorem, Levy decomposition. Semi-simple algebras, their classification and finite-dimensional representations, Verma modules, and Weyl character formula.
Note: Expected to be given in 200607.
Mathematics 129. Topics in Number Theory
Catalog Number: 2345
Benedict H. Gross
Half course (spring term). M., W., F., at 10. EXAM GROUP: 3
Algebraic number theory: number fields, unique factorization of ideals, finiteness of class group, structure of unit group, Frobenius elements, local fields, ramification, weak approximation, adeles, and ideles.
Prerequisite: Mathematics 122 and 123.
Mathematics 131. Topology
Catalog Number: 2381
Tom Coates
Half course (fall term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Basic notions of point set topology such as continuity, compactness, metrizability. Algebraic topology including fundamental groups, covering spaces, and higher homotopy groups.
Prerequisite: Some acquaintance with metric space topology (Mathematics 25a,b, 55a,b, 101, or 112) and with groups (Mathematics 101 or 122).
[Mathematics 134. Calculus on Manifolds]
Catalog Number: 7150
----------
Half course (fall term). Hours to be arranged.
Generalization of multivariable calculus to the setting of manifolds in real n-space, as used in the study of global analysis and geometry. Differentiable mappings of linear spaces, the inverse and implicit function theorems, differential forms, integration on manifolds, the general version of Stokess theorem, integral geometry, applications.
Note: Expected to be given in 200607.
Prerequisite: Mathematics 21a,b and familiarity with proofs as in Mathematics 101, 112, 121, or the equivalent.
Mathematics 135. Differential Topology
Catalog Number: 2107
Eaman Eftekhary
Half course (spring term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
Smooth manifolds, intersection theory, vector fields, Hopf degree theorem, Euler characteristic, De Rham theory.
Prerequisite: Mathematics 23a,b, 25a,b, 55a,b, or 134.
Mathematics 136. Differential Geometry
Catalog Number: 1949
Ilia Zharkov
Half course (fall term). M., W., F., at 11. EXAM GROUP: 4
Curves and surfaces in 3-space: curvature and its intrinsic meaning, Gauss-Bonnet theorem, surfaces of constant curvature, introduction to Riemannian geometry with applications in dimension two.
Prerequisite: Mathematics 21a,b and familiarity with proofs as in Mathematics 101, 112, 121, or equivalent.
Mathematics 137. Algebraic Geometry
Catalog Number: 0556
Shing-Tung Yau
Half course (spring term). M., W., F., at 2. EXAM GROUP: 7
Affine and projective spaces, plane curves, Bezouts theorem, singularities and genus of a plane curve, Riemann-Roch theorem.
Prerequisite: Mathematics 122, 123.
Mathematics 138. Classical Geometry
Catalog Number: 0162
Paul G. Bamberg
Half course (spring term). M., W., 45:30. EXAM GROUP: 9
An exploration of the many different flavors of plane geometry. The course begins with finite geometry, then surveys the nine possible Cayley-Klein plane geometries, focusing on Euclidean geometry, the Galilean geometry of uniform motion, spherical and elliptic geometry, and geometries related to relativistic physics such as Minkowskian geometry and hyperbolic geometry. An important tool in the study of these geometries is a study of their symmetry groups.
Prerequisite: Mathematics 21a and 21b (may be taken concurrently), or Mathematics 23a, 25a, or 55a.
Mathematics 139x. Topics in Symplectic Geometry
Catalog Number: 0911
Shlomo Z. Sternberg
Half course (fall term). Tu., Th., 11:301. EXAM GROUP: 13, 14
An introduction to symplectic geometry which lies at the heart of Hamiltonian mechanics and has recent applications to topology.
Prerequisite: Solid background in linear algebra and multivariable calculus.
Mathematics 141. Introduction to Mathematical Logic
Catalog Number: 0600
Gerald E. Sacks
Half course (fall term). Tu., Th., 11:301. EXAM GROUP: 13, 14
An introduction to mathematical logic with applications to computer science and algebra. Formal languages. Completeness and compactness of first order logic. Definability and interpolation. Decidability. Unsolvable problems. Computable functions and Turing machines. Recursively enumerable sets. Transfinite induction.
Prerequisite: Any mathematics course at the level of Mathematics 21a,b or higher, or permission of instructor.
Mathematics 143. Set Theory
Catalog Number: 6005
Gerald E. Sacks
Half course (spring term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Axioms of set theory. Gödels constructible universe. Consistency of the axiom of choice and of the generalized continuum hypothesis. Cohens forcing method. Independence of the AC and GCH.
Prerequisite: Any mathematics course at the level of 21a or higher, or permission of instructor.
[Mathematics 144. Model Theory and Algebra]
Catalog Number: 0690
----------
Half course (spring term). Hours to be arranged.
An introduction to model theory with applications to fields and groups. First order languages, structures, and definable sets. Compactness, completeness, and back-and-forth constructions. Quantifier elimination for algebraically closed, differentially closed, and real closed fields. Omitting types, prime extensions, existence and uniqueness of the differential closure, saturation, and homogeneity. Forking, independence, and rank.
Note: Expected to be given in 200607.
Prerequisite: Mathematics 123 or the equivalent is suggested as a prerequisite, but not required.
Mathematics 152 (formerly Mathematics 102). Methods of Discrete Mathematics
Catalog Number: 8389
Paul G. Bamberg
Half course (fall term). Section I: Tu., Th., 12:30; Section II: Tu., Th., 2:304. EXAM GROUP: 15, 16
An introduction to finite groups, finite fields, finite geometry, discrete probability, and graph theory. A unifying theme of the course is the symmetry group of the regular icosahedron, whose elements can be realized as permutations, as linear transformations of vector spaces over finite fields, as collineations of a finite plane, or as vertices of a graph. Taught in a seminar format, and students will gain experience in presenting proofs at the blackboard.
Note: Students who have taken Mathematics 25ab or 55ab should not take this course for credit.
Prerequisite: Mathematics 21b or equivalent.
Mathematics 153. Mathematical Biology-Evolutionary Dynamics
Catalog Number: 3004 Enrollment: Limited to 30.
Martin A. Nowak
Half course (fall term). Tu., Th., 12:30. EXAM GROUP: 15, 16
Introduces basic concepts of mathematical biology and evolutionary dynamics: evolution of genomes, quasi-species, finite and infinite population dynamics, chaos, game dynamics, evolution of cooperation and language, spatial models, evolutionary graph theory, infection dynamics, somatic evolution of cancer.
Note: Limited to seniors and graduate students.
Prerequisite: Mathematics 21a and b, Biological Sciences 50 and 53 or equivalent.
Mathematics 191. Mathematical Probability
Catalog Number: 4306
Paul G. Bamberg
Half course (spring term). Tu., Th., 45:30. EXAM GROUP: 18
An introduction to probability theory. Discrete and continuous random variables; distribution and density functions for one and two random variables; conditional probability. Generating functions, weak and strong laws of large numbers, and the central limit theorem. Geometrical probability. Elements of random processes: the Poisson process, random walks, and Markov chains.
Prerequisite: Any mathematics course at the level of Mathematics 19, or 21a, b or higher, or knowledge of multivariable calculus as demonstrated on the online placement test.
Mathematics 192r. Algebraic Combinatorics
Catalog Number: 6612
Thomas Lam
Half course (fall term). M., W., F., at 12. EXAM GROUP: 5
An introduction to the relation between algebra and combinatorics. Topics include generating functions, partially ordered sets and mobius functions, partitions and tableaux theory, and algebraic graph theory.
Note: No prior knowledge of combinatorics is assumed, but familiarity with linear algebra will be helpful.
Mathematics 194. Combinatorial Game Theory
Catalog Number: 0658
Jacob Lurie
Half course (spring term). M., W., F., at 1. EXAM GROUP: 6
An introduction to the theory of combinatorial games (games of no chance and perfect information). Topics: the arithmetic of games, structure theory for impartial games, surreal numbers, temperature theory for finite games, and Nortons analysis of all small games via the atomic weight calculus.
Prerequisite: Mathematics 123 or equivalent.
Mathematics 212b. Advanced Real Analysis
Catalog Number: 7294
Curtis T. McMullen
Half course (spring term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
Continuation of Mathematics 212a. Functional analysis and applications. Topics may include distributions, elliptic regularity, spectral theory, operator algebras, unitary representations, and ergodic theory.
Prerequisite: Mathematics 212a and 213a.
Mathematics 213a. Functions of One Complex Variable
Catalog Number: 1621
Wilfried Schmid
Half course (fall term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Review of basic complex analysis. Further topics will include series and product developments, uniformization, and special functions.
Prerequisite: Basic complex analysis or ability to learn quickly.
Mathematics 213b. Further Topics in Classical Complex Analysis
Catalog Number: 2641
Wilfried Schmid
Half course (spring term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Compact Riemann surfaces, Riemann-Roch theorem, and introduction to the theory of modular forms.
Prerequisite: Mathematics 213a and previous or concurrent enrollment in 212a and b preferred.
Mathematics 214x. Geometric Analysis
Catalog Number: 0926
Yum Tong Siu
Half course (spring term). M., W., F., at 11. EXAM GROUP: 4
A study of major techniques of estimates in partial differential equations which have been developed for global problems in Riemannian geometry, Kaehler geometry, Yang-Mills theory, Cauchy-Riemann geometry, and the complex Neumann problem.
Mathematics 230ar. Differential Geometry
Catalog Number: 0372
Peter B. Kronheimer
Half course (fall term). M., W., F., at 1. EXAM GROUP: 6
Elements of differential geometry: Riemannian geometry, symplectic and Kaehler geometry, Geodesics, Riemann curvature, Darbouxs theorem, moment maps and symplectic quotients, complex and Kaehler manifolds, Dolbeault and de Rham cohomology.
Mathematics 230br. Differential Geometry
Catalog Number: 0504
Peter B. Kronheimer
Half course (spring term). M., W., F., at 1. EXAM GROUP: 6
A continuation of Mathematics 230ar. Topics in global Riemannian geometry: Ricci curvature and volume comparison; sectional curvature and distance comparison; Toponogovs theorem and applications; sphere theorems; Gromovs betti number bounds; Gromov-Hausdorff convergence; Cheegers finiteness theorem, and convergence theorems.
Prerequisite: Mathematics 135.
Mathematics 233. General Relativity
Catalog Number: 0676
Shing-Tung Yau
Half course (fall term). M., W., F., at 12. EXAM GROUP: 5
Descriptions of topology and geometry of space time within the frameworks of general relativity. A discussion of the problems of defining conversed quantities of general relativity that are important to both physical and geometric considerations. Discussion of evolutions of the Einstein equation.
Mathematics 234. Evolutionary Dynamics
Catalog Number: 8136
Martin A. Nowak
Half course (spring term). Tu., Th., 12:30. EXAM GROUP: 15, 16
Advanced topics of evolutionary dynamics. Seminars and research projects.
Prerequisite: Experience with mathematical biology at the level of Mathematics 153.
Mathematics 235. Minimal Surfaces
Catalog Number: 0677
Shing-Tung Yau
Half course (spring term). M., W., F., at 12. EXAM GROUP: 5
Discussions of classical minimal surfaces in Euclidean space and their constructions through variational means and also through mean curvature flow. A discussion of special Lagrangian minimal submanifolds that are important for Calabi Yau manifolds.
Mathematics 250. Higher Algebra
Catalog Number: 9334
Barry C. Mazur
Half course (fall term). M., W., F., at 2. EXAM GROUP: 7
Focuses on Galois theory and a small amount of representation theory of finite groups. A study of the important applications of this material to number theory, and the study of algebraic curves.
Prerequisite: Mathematics 123 or equivalent.
[Mathematics 251a. Algebraic Number Theory]
Catalog Number: 1703
----------
Half course (fall term). Hours to be arranged.
A graduate introduction to algebraic number theory. Topics: local fields, Galois cohomology, local class field theory, and local duality.
Note: Expected to be given in 200607.
Prerequisite: Mathematics 123 or 250 and permission of instructor.
[Mathematics 251b. Algebraic Number Theory]
Catalog Number: 7441
----------
Half course (spring term). Hours to be arranged.
Continuation of Mathematics 251a. Topics: global fields, adeles, class field theory, and duality. Other topics may include: Tates thesis, cyclotomic fields, or Euler systems.
Note: Expected to be given in 200607.
Prerequisite: Mathematics 251a or permission of instructor.
Mathematics 254z. Current Results in Modular Forms
Catalog Number: 0941
Barry C. Mazur
Half course (spring term). M., W., F., at 2. EXAM GROUP: 7
A study of the background material necessary for the comprehension of some recent results in the theory of modular and automorphic forms, and specifically p-adic modular forms. The course will involve substantial student presentations.
Mathematics 255y. A Concrete Approach to p-adic Forms
Catalog Number: 3603
Kevin Buzzard (Imperial College)
Half course (spring term). Tu., Th., 12:30. EXAM GROUP: 15, 16
Brief introduction to classical and overconvergent modular forms. How parts of the Coleman-Mazur eigencurve can be computed. The Gouvea-Mazur conjectures. Eigencurves at the centre and boundaryof weight space. Concrete accessible open problems.
Mathematics 260a. Introduction to Algebraic Geometry
Catalog Number: 7004
Yum Tong Siu
Half course (fall term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Introduction to complex algebraic curves, surfaces, and varieties.
Prerequisite: Mathematics 250.
Mathematics 260b. Introduction to Algebraic Geometry
Catalog Number: 2745
Joseph D. Harris
Half course (spring term). M., W., F., at 10. EXAM GROUP: 3
Continuation of 260a: Introduction to the theory of coherent sheaves, schemes, and sheaf cohomology, with examples and applications.
Mathematics 261a. Theory of Schemes
Catalog Number: 0947
Francesco Calegari
Half course (fall term). M., W., F., at 12. EXAM GROUP: 5
An introduction to the theory and language of schemes. We will follow closely Chapters II and III of Hartshornes book Algebraic Geometry.
Note: Weekly homework will constitute an important part of the course.
Prerequisite: Mathematics 137 and 250 or permission of instructor.
Mathematics 261b. Theory of Schemes
Catalog Number: 0956
Samit Dasgupta
Half course (spring term). M., W., F., at 12. EXAM GROUP: 5
Continuation of Mathematics 261a.
Mathematics 267y. Geometric Representation Theory
Catalog Number: 0996
Dennis Gaitsgory
Half course (fall term). M., W., F., at 1. EXAM GROUP: 6
Category O, Beilinson-Bernstein localization, Kac-Moody algebras, affine Grassmannian and Langlands duality.
Prerequisite: Algebraic geometry, basics of D-modules, basics of semi-simple groups and Lie algebras.
Mathematics 271x. Manifolds of Special Holonomy
Catalog Number: 1007
Ilia Zharkov
Half course (spring term). Tu., Th., 11:301. EXAM GROUP: 13, 14
Bergers classification of holonomy: Kahler, hyper-Kahler, Calabi-Yau manifolds. Calabi conjecture and Yaus proof. ALE metrics. Examples of G2 and Spin(7) manifolds. Calibrated submanifolds.
Mathematics 272a. Introduction to Algebraic Topology
Catalog Number: 1666
Joseph D. Harris
Half course (fall term). M., W., F., at 10. EXAM GROUP: 3
Covering spaces and fibrations. Simplicial and CW complexes. Homology and cohomology, universal coefficients and Künneth formulas. Hurewicz theorem. Manifolds and Poincaré duality.
Prerequisite: Mathematics 131 or permission of instructor.
Mathematics 272b. Introduction to Algebraic Topology
Catalog Number: 6502
Eaman Eftekhary
Half course (spring term). M., W., F., at 11. EXAM GROUP: 4
Spectral sequences and techniques of computation. Vector bundles and characteristic classes. Bott periodicity. K-theory, cobordism and stable cohomotopy as examples of cohomology theories.
Prerequisite: Mathematics 272a.
Mathematics 274x. Heegaard Floer Homology
Catalog Number: 1018
Eaman Eftekhary
Half course (fall term). Tu., Th., 1011:30. EXAM GROUP: 12, 13
Heegaard diagrams for three and four dimentional manifolds, Heegaard Floer homology as the Floer homology of the symmetric product and as an example of symplectic field theory, exact triangles, computations, applications to knot theory.
Mathematics 277y. Topics in Homotopy Theory
Catalog Number: 1021
Michael J. Hopkins
Half course (fall term). Th., 35. EXAM GROUP: 17, 18
An investigation of several topics in string topology including the recent work of Galatius-Madsen-Tillmann-Weiss on the stable mapping class group, recent work of Sullivan on BV structures and the master equation.
Mathematics 278y. Algebraic Topology Literature
Catalog Number: 1038 Enrollment: Limited to 8.
Michael J. Hopkins
Half course (fall term). Tu., Th., 12:30. EXAM GROUP: 15, 16
A literature course in advanced topics in algebraic topology. Material will be taken from research papers, both classical and contemporary, and the presentation will involve significant participation from the students.
Note: Enrollment limited, please contact the professor before registering.
*Mathematics 304. Topics in Algebraic Topology
Catalog Number: 0689
Michael J. Hopkins 4376
*Mathematics 307. Topics in Differential Geometry and Partial Differential Equations
Catalog Number: 5133
Benjamin Weinkove 4942 (on leave 2005-06)
*Mathematics 308. Topics in Number Theory and Modular Forms
Catalog Number: 0464
Benedict H. Gross 1112
*Mathematics 309. Topics in Dynamical Systems Theory
Catalog Number: 0552
Daniel L. Goroff 7683 (on leave 2005-06)
*Mathematics 310. Topics in Number Theory
Catalog Number: 3874
Samit Dasgupta 5030
*Mathematics 314. Topics in Differential Geometry and Mathematical Physics
Catalog Number: 2743
Shlomo Z. Sternberg 1965 (on leave spring term)
*Mathematics 318. Topics in Number Theory
Catalog Number: 7393
Barry C. Mazur 1975
*Mathematics 321. Topics in Mathematical Physics
Catalog Number: 2297
Arthur M. Jaffe 2095
*Mathematics 326. Topics in Arithmetic Geometry of Modular Curves and Shimura Curves
Catalog Number: 2696
David Helm 4630 (on leave 2005-06)
*Mathematics 327. Topics in Several Complex Variables
Catalog Number: 0409
Yum Tong Siu 7550
*Mathematics 328. Topics in Lie Algebra
Catalog Number: 7003
Alberto De Sole 4627
*Mathematics 329. Topics in Knot Theory
Catalog Number: 2194
Elizabeth Denne 5031
*Mathematics 333. Topics in Complex Analysis, Dynamics and Geometry
Catalog Number: 9401
Curtis T. McMullen 3588
*Mathematics 335. Topics in Differential Geometry and Analysis
Catalog Number: 5498
Clifford Taubes 1243
*Mathematics 342. Topics in Combinatorics
Catalog Number: 0751
Thomas Lam 5322
*Mathematics 344. Topics in Number Theory
Catalog Number: 2526
Francesco Calegari 4435
*Mathematics 345. Topics in Geometry and Topology
Catalog Number: 4108
Peter B. Kronheimer 1759
*Mathematics 346y. Topics in Analysis: Quantum Dynamics
Catalog Number: 1053
Horng-Tzer Yau 5260
*Mathematics 347. Topics in Floer Homology and Low Dimensional Topology
Catalog Number: 7227
Eaman Eftekhary 5045
*Mathematics 350. Topics in Mathematical Logic
Catalog Number: 5151
Gerald E. Sacks 3862
*Mathematics 351. Topics in Algebraic Number Theory
Catalog Number: 3492
Richard L. Taylor 1453
*Mathematics 356. Topics in Harmonic Analysis
Catalog Number: 6534
Wilfried Schmid 5097
*Mathematics 365. Topics in Differential Geometry
Catalog Number: 4647
Shing-Tung Yau 1734
*Mathematics 371. Topics in Partial Differential Equations and Mathematical Physics
Catalog Number: 0777
Robert M. Strain 5323
*Mathematics 376. Topics in Analysis of Partial Differential Equations
Catalog Number: 1023
Joachim Krieger 4632
*Mathematics 381. Introduction to Geometric Representation Theory
Catalog Number: 0800
Dennis Gaitsgory 5259
*Mathematics 382. Topics in Algebraic Geometry
Catalog Number: 2037
Joseph D. Harris 2055
*Mathematics 383. Topics in Algebraic Geometry
Catalog Number: 7736
Ilia Zharkov 4631
*Mathematics 386. Topics in Several Complex Variables and CR Geometry
Catalog Number: 3746
Andreea C. Nicoara 4374
*Mathematics 388. Topics in Mathematics and Biology
Catalog Number: 4687
Martin A. Nowak 4568
*Mathematics 389. Topics in Number Theory
Catalog Number: 6851
Noam D. Elkies 2604
*Mathematics 392. Topics in Geometry
Catalog Number: 8778
Tom Coates 4633 (on leave spring term)
*Mathematics 398. Topics in Algebraic and Geometric Topology
Catalog Number: 0863
Véronique Godin 5311