GALOIS DEFORMATION AND \mathcal{L} -INVARIANT

HARUZO HIDA

1. Lecture 2

Let p > 2 be a prime, and fix a totally real finite extension F/\mathbb{Q} . For simplicity, we assume that p splits completely in F/\mathbb{Q} . We start with a Galois representation $\rho_F : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(W)$ associated to a discrete series Hilbert modular form f (over F) with coefficients in a finite extension W/\mathbb{Z}_p (a DVR). We assume the ordinarity of ρ_F :

$$\rho_F|_{D_{\mathfrak{p}}} \cong \begin{pmatrix} \epsilon_{\mathfrak{p}} & *\\ 0 & \alpha_{\mathfrak{p}} \end{pmatrix} \text{ with } \epsilon_{\mathfrak{p}} \neq \alpha_{\mathfrak{p}}, \ \epsilon_{\mathfrak{p}}|_{I_{\mathfrak{p}}} = \mathcal{N}^{k-1} \text{ and } \alpha_{\mathfrak{p}}(I_{\mathfrak{p}}) = 1$$

on the decomposition group and the inertial group $I_{\mathfrak{p}} \subset D_{\mathfrak{p}} \subset \operatorname{Gal}(\overline{\mathbb{Q}}/F)$ for all prime factor \mathfrak{p} of p in F. Here $\mathcal{N}(\sigma) \in \mathbb{Z}_p^{\times}$ is the p-adic cyclotomic character with $\exp(\frac{2\pi i}{p^n})^{\sigma} = \exp(\frac{\mathcal{N}(\sigma)2\pi i}{p^n})$ for all n > 0 and k > 1 is an integer. Again for **simplicity**, we assume that ρ is unramified outside p. Thus for any prime $\mathfrak{l} \nmid p$, writing $f|T(\mathfrak{l}) = a_{\mathfrak{l}}f$, we have $\operatorname{Tr}(\rho(Frob_{\mathfrak{l}})) = a_{\mathfrak{l}} \in W$. Let K be the quotient field of W (so, K/\mathbb{Q}_p is a finite extension).

We consider the **universal** nearly ordinary deformation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(R)$ over K with the pro-Artinian local universal K-algebra R. This means that for any Artinian local K-algebra A with maximal ideal \mathfrak{m}_A and any Galois representation $\rho_A : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(A)$ such that

- (K1) unramified outside p;
- (K2) $\rho_A|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/F_{\mathfrak{p}})} \cong (\overset{*}{0} \overset{*}{\alpha_{A,\mathfrak{p}}})$ with $\alpha_{A,\mathfrak{p}} \equiv \alpha_{\mathfrak{p}} \mod \mathfrak{m}_A$;
- (K3) $\det(\rho_A) = \det \rho_F$;
- (K4) $\rho_A \equiv \rho_F \mod \mathfrak{m}_A$,

there exists a unique K-algebra homomorphism $\varphi : R \to A$ such that $\varphi \circ \rho \cong \rho_A$. Note that $\mathcal{N} : \operatorname{Gal}(F_{\mathfrak{p}}[\mu_{p^{\infty}}]/F_{\mathfrak{p}}) \cong \mathbb{Z}_p^{\times}$ (by splitting of p in F/\mathbb{Q}). Let $\Gamma_{\mathfrak{p}} = 1 + p\mathbb{Z}_p \subset \operatorname{Gal}(F_{\mathfrak{p}}[\mu_{p^{\infty}}]/F_{\mathfrak{p}})$. Choose a generator $\gamma_{\mathfrak{p}}$ of $\Gamma_{\mathfrak{p}}$ and identify $W[[\Gamma_{\mathfrak{p}}]]$ with $W[[X_{\mathfrak{p}}]]$ by $\gamma_{\mathfrak{p}} \leftrightarrow 1 + X_{\mathfrak{p}}$. Since $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/F_{\mathfrak{p}})} \cong ({}^*_{\mathfrak{o}} {}^*_{\mathfrak{p}}), \delta_{\mathfrak{p}} \alpha_{\mathfrak{p}}^{-1} : \Gamma_{\mathfrak{p}} \to R$ induces an algebra structure on R over $W[[X_{\mathfrak{p}}]]$. Thus R is an algebra over $K[[X_{\mathfrak{p}}]]_{\mathfrak{p}|p}$. If we write $\varphi : R \to K$ for the morphism with $\varphi \circ \rho \cong \rho_F$, by our construction, $\operatorname{Ker}(\varphi) \supseteq (X_{\mathfrak{p}})_{\mathfrak{p}|p}$.

Date: May 1, 2006.

The second lecture at Harvard University on 5/1/2006. The author is partially supported by an NSF grant: DMS 0244401 and DMS 0456252.

Here is the theorem we have seen in the first lecture:

Theorem 1.1. Suppose $R \cong K[[X_{\mathfrak{p}}]]_{\mathfrak{p}|p}$. Then, if $\varphi \circ \rho \cong \rho_F$, for the local Artin symbol $[p, F_{\mathfrak{p}}] = Frob_{\mathfrak{p}}$, we have

$$\mathcal{L}(\operatorname{Ind}_{F}^{\mathbb{Q}} Ad(\rho_{F})) = \mathcal{L}(Ad(\rho_{F})) = \det\left(\frac{\partial \boldsymbol{\delta}_{\mathfrak{p}}([p, F_{\mathfrak{p}}])}{\partial X_{\mathfrak{p}'}}\right)_{\mathfrak{p}, \mathfrak{p}'} \Big|_{X=0} \prod_{\mathfrak{p}} \log_{p}(\gamma_{\mathfrak{p}}) \alpha_{\mathfrak{p}}([p, F_{\mathfrak{p}}])^{-1}.$$

Greenberg proposed a conjectural formula of the \mathcal{L} -invariant for a general *p*-adic *p*-ordinary Galois representation *V* with an exceptional zero. When $V = Ad(\rho_F)$, his definition goes as follows. Under some hypothesis, he found a unique subspace $\mathbb{H} \subset H^1(F, Ad(\rho_F))$ of dimension $e = |\{\mathfrak{p}|p\}|$ represented by cocycles $c : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to Ad(\rho_F)$ such that

(1) c is unramified outside p;

(2) c restricted to $D_{\mathfrak{p}}$ is upper triangular after conjugation for all $\mathfrak{p}|p$.

By the condition (2), $c|_{I_{\mathfrak{p}}}$ modulo upper nilpotent matrices factors through the cyclotomic Galois group $\operatorname{Gal}(\mathbb{Q}_p[\mu_{p^{\infty}}]/\mathbb{Q}_p)$ because $F_{\mathfrak{p}} = \mathbb{Q}_p$, and hence $c|_{D_{\mathfrak{p}}}$ modulo upper nilpotent matrices becomes unramified everywhere over the cyclotomic \mathbb{Z}_p -extension F_{∞}/F . In other words, the cohomology class [c] is in $\operatorname{Sel}_{F_{\infty}}(Ad(\rho_F))$ but not in $\operatorname{Sel}_F(Ad(\rho_F))$.

Take a basis $\{c_{\mathfrak{p}}\}_{\mathfrak{p}|p}$ of \mathbb{H} over K. Write

$$c_{\mathfrak{p}}(\sigma) \sim \begin{pmatrix} -a_{\mathfrak{p}}(\sigma) & *\\ 0 & a_{\mathfrak{p}}(\sigma) \end{pmatrix}$$
 for $\sigma \in D_{\mathfrak{p}'}$ with any $\mathfrak{p}'|p$.

Then $a_{\mathfrak{p}}: D_{\mathfrak{p}'} \to K$ is a homomorphism. His \mathcal{L} -invariant is defined by

$$\mathcal{L}(Ad(\rho_F)) = \det\left(\left(a_{\mathfrak{p}}([p, F_{\mathfrak{p}'}])_{\mathfrak{p}, \mathfrak{p}'|p}\left(\log_p(\gamma_{\mathfrak{p}'})^{-1}a_{\mathfrak{p}}([\gamma_{\mathfrak{p}'}, F_{\mathfrak{p}'}])\right)_{\mathfrak{p}, \mathfrak{p}'|p}\right)^{-1}\right).$$

The above value is independent of the choice of the basis $\{c_{\mathfrak{p}}\}_{\mathfrak{p}}$. Then assuming the following two conditions:

- (1) $\overline{\rho} = (\rho_F \mod \mathfrak{m}_W)$ is absolutely irreducible over $\operatorname{Gal}(\overline{\mathbb{Q}}/F[\mu_p]);$
- (ds) $\overline{\rho}^{ss}$ has a non-scalar value over $\operatorname{Gal}(\overline{F}_{\mathfrak{p}}/F_{\mathfrak{p}})$ for all prime factors $\mathfrak{p}|p$,

by using a result of Taylor-Wiles and Fujiwara (see Fujiwara's paper: arXiv.math.NT/0602606), we can prove $R \cong K[[X_p]]$, and the following conjecture for the arithmetic *L*-function is a theorem except for the nonvanishing $\mathcal{L}(Ad(\rho_F)) \neq 0$ (see [H00] Theorem 6.3 (4)):

Conjecture 1.2 (Greenberg). Suppose ((ds) and that $\overline{\rho}$ is absolutely irreducible. For $L_p^{arith}(s, Ad(\rho_F)) = \Phi^{arith}(\gamma^s - 1)$, then $L_p^{arith}(s, Ad(\rho_F))$ has zero of order equal to $d = [F : \mathbb{Q}]$ and for the constant $\mathcal{L}(Ad(\rho_F)) \in K^{\times}$ specified by the determinant as in the theorem, we have

$$\lim_{s \to 1} \frac{L_p^{arith}(s, Ad(\rho_F))}{(s-1)^d} = \mathcal{L}(Ad(\rho_F))\mathcal{E}^+(Ad(\rho_F)) \big| |\mathrm{Sel}_{\mathbb{Q}}(\mathrm{Ind}_F^{\mathbb{Q}} Ad(\rho_F)^*)| \big|_p^{-1/[K:\mathbb{Q}_F]} \big|_p^{-1/[$$

up to units.

In the following section, we describe the Selmer group and how to define \mathbb{H} .

1.1. Selmer Groups. We recall Greenberg's definition of Selmer groups. Write $F^{(p)}/F$ for the maximal extension unramified outside p and ∞ . Put $\mathfrak{G} = \operatorname{Gal}(F^{(p)}/F)$ and $\mathfrak{G}_M = \operatorname{Gal}(F^{(p)}/M)$. Let $V = Ad(\rho_F)$ with a continuous action of \mathfrak{G} . We fix a W-lattice T in V stable under \mathfrak{G} .

Write $D = D_{\mathfrak{p}} \subset \mathfrak{G}$ for the decomposition group of each prime factor $\mathfrak{p}|p$. Choosing a basis of ρ_F so that $\rho_F|_D$ is upper triangular. We have a 3-step filtration:

(ord)
$$V \supset \mathcal{F}_{\mathfrak{p}}^{-}V \supset \mathcal{F}_{\mathfrak{p}}^{+}V \supset \{0\},$$

where taking a basis so that $\rho_F|_D$ is upper triangular, $\mathcal{F}_p^- V$ is made up of upper triangular matrices and $\mathcal{F}_p^+ V$ is made up of upper nilpotent matrices, and on $\mathcal{F}_p^- V/\mathcal{F}_p^+ V$, D acts trivially (getting eigenvalue 1 for $Frob_p$). Since V is self-dual, its dual $V^*(1) = \operatorname{Hom}_K(V, K) \otimes \mathcal{N}$ again satisfies (ord).

Let M/F be a subfield of $F^{(p)}$, and put $\mathfrak{G}_M = \operatorname{Gal}(F^{(p)}/M)$. We write \mathfrak{p} for a prime of M over p and \mathfrak{q} for general primes of M. We put

$$L_{\mathfrak{p}}(V) = \operatorname{Ker}(\operatorname{Res} : H^{1}(M_{\mathfrak{p}}, V) \to H^{1}(I_{\mathfrak{p}}, \frac{V}{\mathcal{F}_{\mathfrak{p}}^{+}(V)}))$$

Then for a \mathfrak{G}_M -stable W-lattice T of V, we define for the image $L_{\mathfrak{p}}(V/T)$ of $L_{\mathfrak{p}}(V)$ in $H^1(M_{\mathfrak{p}}, V/T)$

(1.1)
$$\operatorname{Sel}_M(A) = \operatorname{Ker}(H^1(\mathfrak{G}_M, A) \to \prod_{\mathfrak{p}} \frac{H^1(M_{\mathfrak{p}}, A)}{L_{\mathfrak{p}}(A)}) \text{ for } A = V, V/T.$$

The classical Selmer group of V is given by $\operatorname{Sel}_M(V/T)$, equipped with discrete topology. Write F_{∞} for the cyclotomic \mathbb{Z}_p -extension of F. We define "-" Selmer group replacing $L_{\mathfrak{p}}(A)$ by

$$L_{\mathfrak{p}}^{-}(V) = \operatorname{Ker}(\operatorname{Res} : H^{1}(M_{\mathfrak{p}}, V) \to H^{1}(I_{\mathfrak{p}}, \frac{V}{\mathcal{F}_{\mathfrak{p}}^{-}(V)})).$$

Lemma 1.3. Suppose $R \cong K[[X_{\mathfrak{p}}]]_{\mathfrak{p}|p}$. Then $\operatorname{Sel}_{F}^{-}(V) \cong \operatorname{Hom}_{K}(\mathfrak{m}_{R}/\mathfrak{m}_{R}^{2}, K)$ and $\operatorname{Sel}_{F}(V) = 0$.

Proof. We consider the space $Der_K(R, K)$ of continuous K-derivations. Let $K[\varepsilon] = K[t]/(t^2)$ for the dual number $\varepsilon = (t \mod t^2)$. Then writing K-algebra homomorphism $\phi : R \to K[\varepsilon]$ as $\phi(r) = \phi_0(r) + \phi_1(r)\varepsilon$ and sending ϕ to $\phi_1 \in Der_K(R, K)$, we have $\operatorname{Hom}_{K-\operatorname{alg}}(R, K[\varepsilon]) \cong Der_K(R, K) = \operatorname{Hom}_K(\mathfrak{m}_R/\mathfrak{m}_R^2, K)$. By the universality of (R, ρ) , we have

$$\operatorname{Hom}_{K-\operatorname{alg}}(R, K[\varepsilon]) \cong \frac{\{\rho : \operatorname{Gal}(\mathbb{Q}/F) \to GL_2(K[\varepsilon]) | \rho \text{ satisfies the conditions } (K1-4)\}}{\cong}.$$

Pick ρ as above. Write $\rho(\sigma) = \rho_0(\sigma) + \rho_1(\sigma)\varepsilon$. Then $c_{\rho} = \rho_1 \rho_F^{-1}$ can be easily checked to be a 1-cocycle having values in $M_2(K) \supset V$. Since $\det(\rho) = \det(\rho_F) \Rightarrow \operatorname{Tr}(c_{\rho}) = 0$,

 c_{ρ} has values in V. By the reducibility condition (K2), $[c_{\rho}] \in \operatorname{Sel}_{F}^{-}(V)$. We see easily that $\rho \cong \rho' \Leftrightarrow [c_{\rho}] = [c_{\rho'}]$. We can reverse the above argument starting a cocycle c giving an element of $\operatorname{Sel}_{F}^{-}(V)$ to construct a deformation ρ_{c} with values in $K[\varepsilon]$. Thus we have

$$\frac{\{\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(K[\varepsilon]) | \rho \text{ satisfies the conditions } (K1-4)\}}{\cong} \cong \operatorname{Sel}_F^-(V)$$

Since the algebra structure of R over $W[[X_{\mathfrak{p}}]]_{\mathfrak{p}|p}$ is given by $\delta_{\mathfrak{p}}\alpha_{\mathfrak{p}}^{-1}$, the K-derivation $\delta: R \to K$ corresponding to a $K[\varepsilon]$ -deformation ρ is a $W[[X_{\mathfrak{p}}]]$ -derivation if and only if $\rho_1|_{\operatorname{Gal}(\overline{F}_{\mathfrak{p}}/F_{\mathfrak{p}})} \sim ({}^*_{0 \ 0}{}^*_{0})$, which is equivalent to $[c_{\rho}] \in \operatorname{Sel}_F(V)$, because we already knew that $\operatorname{Tr}(c_{\rho}) = 0$. Thus we have $\operatorname{Sel}_F(V) \cong \operatorname{Der}_{W[[X_{\mathfrak{p}}]]}(R, K) = 0$.

We also have

Lemma 1.4.

(V)
$$\operatorname{Sel}_F(V) = 0 \Rightarrow H^1(\mathfrak{G}, V) \cong \prod_{\mathfrak{p}} \frac{H^1(F_{\mathfrak{p}}, V)}{L_{\mathfrak{p}}(V)}.$$

Indeed, by the Poitou-Tate exact sequence, the following sequence is exact:

$$\operatorname{Sel}_F(V) \to H^1(\mathfrak{G}_M, V) \to \prod_{\mathfrak{p}} \frac{H^1(F_{\mathfrak{p}}, V)}{L_{\mathfrak{p}}(V)} \to \operatorname{Sel}_F(V^*(1))^*$$

It is an old theorem of Greenberg that $\dim \operatorname{Sel}_F(V) = \dim \operatorname{Sel}_F(V^*(1))^*$ (see [G] Proposition 2); so, we have the assertion (V).

2. Greenberg's \mathcal{L} -invariant

Here is Greenberg's definition of $\mathcal{L}(V)$: The long exact sequence of $\mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V \hookrightarrow V/\mathcal{F}_{\mathfrak{p}}^{+}V \twoheadrightarrow V/\mathcal{F}_{\mathfrak{p}}^{-}V$ gives a homomorphism, noting $F_{\mathfrak{p}} = \mathbb{Q}_{p}$,

$$H^{1}(F_{\mathfrak{p}}, \mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V) = \operatorname{Hom}(\mathfrak{G}_{\mathbb{Q}_{p}}^{ab}, \mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V) \xrightarrow{\iota_{\mathfrak{p}}} H^{1}(F_{\mathfrak{p}}, V)/L_{\mathfrak{p}}(V).$$

Note that

$$\operatorname{Hom}(G^{ab}_{\mathbb{Q}_p}, \mathcal{F}^-_{\mathfrak{p}}V/\mathcal{F}^+_{\mathfrak{p}}V) \cong (\mathcal{F}^-_{\mathfrak{p}}V/\mathcal{F}^+_{\mathfrak{p}}V)^2 \cong K^2$$

canonically by $\phi \mapsto (\frac{\phi([\gamma, F_{\mathfrak{p}}])}{\log_p(\gamma)}, \phi([p, F_{\mathfrak{p}}]))$. Here $[x, F_{\mathfrak{p}}] = [x, \mathbb{Q}_p]$ is the local Artin symbol (suitably normalized). Since

$$L_p(\mathcal{F}_p^- V/\mathcal{F}_p^+ V) = \operatorname{Ker}(H^1(F_p, \mathcal{F}_p^- V/\mathcal{F}_p^+ V) \xrightarrow{\operatorname{Res}} H^1(I_p, \mathcal{F}_p^- V/\mathcal{F}_p^+ V)),$$

the image of $\iota_{\mathfrak{p}}$ is isomorphic to $\mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V \cong K$. By (V), we have a unique subspace \mathbb{H} of $H^{1}(\mathfrak{G}, V)$ projecting down onto

$$\prod_{\mathfrak{p}} \operatorname{Im}(\iota_{\mathfrak{p}}) \hookrightarrow \prod_{\mathfrak{p}} \frac{H^1(F_{\mathfrak{p}}, V)}{L_{\mathfrak{p}}(V)}.$$

Then by the restriction, \mathbb{H} gives rise to a subspace L of

$$\prod_{\mathfrak{p}} \operatorname{Hom}(G_{F_{\mathfrak{p}}}^{ab}, \mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V) \cong \prod_{\mathfrak{p}} (\mathcal{F}_{\mathfrak{p}}^{-}V/\mathcal{F}_{\mathfrak{p}}^{+}V)^{2}$$

isomorphic to $\prod_{\mathfrak{p}} (\mathcal{F}_{\mathfrak{p}}^- V/\mathcal{F}_{\mathfrak{p}}^+ V)$. If a cocycle *c* representing an element in \mathbb{H} is unramified, it gives rise to an element in $\operatorname{Sel}_F(V)$. By the vanishing of $\operatorname{Sel}_F(V)$ (Lemma 1.3), this implies c = 0; so, the projection of *L* to the first factor $\prod_{\mathfrak{p}} (\mathcal{F}_{\mathfrak{p}}^- V/\mathcal{F}_{\mathfrak{p}}^+ V)$ (via $\phi \mapsto (\phi([\gamma, F_{\mathfrak{p}}])/\log_p(\gamma))_{\mathfrak{p}})$ is surjective. Thus this subspace *L* is a graph of a *K*-linear map $\mathcal{L} : \prod_{\mathfrak{p}} \mathcal{F}_{\mathfrak{p}}^- V/\mathcal{F}_{\mathfrak{p}}^+ V \to \prod_{\mathfrak{p}} \mathcal{F}_{\mathfrak{p}}^- V/\mathcal{F}_{\mathfrak{p}}^+ V$. We then define $\mathcal{L}(V) = \det(\mathcal{L}) \in K$.

Let $\boldsymbol{\rho} : \mathfrak{G}_F \to GL_2(R)$ be the universal nearly ordinary deformation with $\boldsymbol{\rho}|_D = \begin{pmatrix} * & * \\ 0 & \boldsymbol{\delta} \end{pmatrix}$. Then $c_{\mathfrak{p}} = \frac{\partial \boldsymbol{\rho}}{\partial X_{\mathfrak{p}}}|_{X=0}\rho_F^{-1}$ is a 1-cocycle (by the argument proving Lemma 1.3) giving rise to a class of \mathbb{H} . By Lemma 1.3, $\mathbb{H} = \operatorname{Sel}_F^-(V)$, and $\{c_{\mathfrak{p}}\}_{\mathfrak{p}}$ gives a basis of \mathbb{H} over K. We have $\boldsymbol{\delta}([u, F_{\mathfrak{p}}]) = (1 + X_{\mathfrak{p}})^{\log_p(u)/\log_p(\gamma)}$ for $u \in O_{\mathfrak{p}}^{\times} = \mathbb{Z}_p^{\times}$. Writing

$$c_{\mathfrak{p}}(\sigma) = \begin{pmatrix} -a_{\mathfrak{p}}(\sigma) & * \\ 0 & a_{\mathfrak{p}}(\sigma) \end{pmatrix} \rho_F(\sigma)^{-1},$$

we have $a_{\mathfrak{p}} = \boldsymbol{\delta}^{-1} \frac{d\boldsymbol{\delta}}{dX_{\mathfrak{p}}}|_{X=0}$, and from this we get the desired formula of $\mathcal{L}(Ad(\rho_F))$.

If one restricts $c \in \mathbb{H}$ to $\mathfrak{G}_{\infty} = \operatorname{Gal}(F^{(p)}/F_{\infty})$, its ramification is exhausted by $\Gamma = \operatorname{Gal}(F_{\infty}/F)$ (because $F_{\mathfrak{p}} = \mathbb{Q}_p$) giving rise to a class $[c] \in \operatorname{Sel}_{F_{\infty}}(V)$. The kernel of the restriction map: $H^1(\mathfrak{G}, V) \to H^1(\mathfrak{G}_{\infty}, V)$ is given by $H^1(\Gamma, H^0(\mathfrak{G}_{\infty}, V)) = 0$ because $H^0(\mathfrak{G}_{\infty}, V) = 0$. Thus the image of \mathcal{H} in $\operatorname{Sel}_{F_{\infty}}(V/T)$ gives rise to the order d exceptional zero of $L^{arith}(s, Ad(\rho_F))$ at s = 1. We have proved

Proposition 2.1. For the number of prime factors $d = [F : \mathbb{Q}]$ of p in F, we have $\operatorname{ord}_{s=1} L_p^{arith}(s, Ad(\rho_F)) \ge d.$

References

- [G] R. Greenberg, Trivial zeros of p-adic L-functions, Contemporary Math. 165 (1994), 149–174
- [GS] R. Greenberg and G. Stevens, *p*-adic *L*-functions and *p*-adic periods of modular forms, Inventiones Math. **111** (1993), 407–447
- [H00] H. Hida, Adjoint Selmer groups as Iwasawa modules, Israel Journal of Math. **120** (2000), 361–427
- [MFG] H. Hida, *Modular Forms and Galois Cohomology*, Cambridge Studies in Advanced Mathematics **69**, 2000, Cambridge University Press