
ELLIPTIC CURVES WITH MULTIPLICATIVE REDUCTION

HARUZO HIDA

1. Lecture 3

Let p be an odd prime. Order the prime factors of p as p1, . . . , pg. In this lecture, we
describe the computation of the L-invariant of Ad(TpE) for a modular elliptic curve
E/F with split multiplicative reduction at pj|p > 2 for j = 1, 2, . . . , k and ordinary
good reduction at pj|p for j > k.

Theorem 1.1. Assume that R ∼= Qp[[Xp]]p|p. Suppose that the Hilbert-modular el-
liptic curve E has split multiplicative reductionat pj for j = 1, 2, . . . , k (k ≤ g) with
Tate period qj at pj for j ≤ k and has ordinary good reduction at pi with i > k. Then
for the local Artin symbol [p, Fp] = Frobp and the norm Qj = NFpj/Qp(qj), we have

for ρE = TpE

L(IndQ
F Ad(ρE)) =

(
k∏

j=1

logp(Qj)

ordp(Qj)

)
· det

(
∂δp([p, Fi])

∂Xj

)

i>k,j>k

∣∣∣
X=0

∏

i>k

logp(γpi)

αp([p, Fi])
,

where γp is the generator of the p-profinite part Γp of N (Gal(Fp[µp∞]/Fp)) by which
we identify the group algebra W [[Γp]] with W [[Xp]].

In the proof, for simplicity, as before, we assume that p is completely split in F/Q.
Also, again for simplicity, in the following proof, we assume E has good reduction
outside p and k = 1. We put ΓF =

∏
p Γp.

1.1. Hecke algebras for quaternion algebras. We make some preparation for
the proof, gathering known facts. We assume that F 6= Q (otherwise the theorem is
known by Greenberg-Stevens). For simplicity, p splits completely in F/Q. Take first
a quaternion algebra B0/F central over F unramified everywhere such that B0⊗Q R ∼=
M2(R)r×Hd−r with 0 ≤ r ≤ 1 (so r ≡ d mod 2). Then we consider the automorphic
variety (either a Shimura curve (r = 1) or a 0-dimensional point set (r = 0)) given
by

X11(p
n) = B×

0 \B×
0,A/S11(p

n)ZAC∞,
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where ZA ∼= F×
A is the center of B×

A , C∞ is a maximal compact subgroup of the

identity component of B×
0,∞ and identifying B

(∞)
0,l = B0 ⊗Q Fl with M2(Fl) for all

primes l,

S11(p
n) =

{
( a bc d ) ∈ GL2(Ô)

∣∣ ( a bc d ) ≡ ( 1 ∗
0 1 ) mod pn

}

for Ô =
∏

lOl. Consider Mn
∼= Hr(X11(p

n),Zp) which is the Pontryagin dual of
Hr(X11(p

n),Qp/Zp) which is a finite rank free Zp-module with Hecke operator action
of T (n) for all prime ideals outside p and U(pnp ) = U(pp)

n and the diamond operator

action 〈z〉 coming from ( z 0
0 1 ) for z ∈ Op. Let e = limn→∞ U(p)n! as an operator acting

on Mn (U(p) =
∏

p U(pp)). Let Mord
n be the direct summand eMn. We have natural

trace map Mm � Mn for m > n compatible with all Hecke operators and all diamond
operators. By the diamond operator action, Mord

∞ = lim←−nM
ord
n naturally become a

W [[ΓF ]]-module. Here is an old theorem of mine:

Theorem 1.2. The W [[ΓF ]]-module Mord
∞ is free of finite rank over W [[ΓF ]].

Let h be the W [[ΓF ]]-algebra generated over W [[ΓF ]] by T (n) for all n prime to p
and all U(p). Then we have

Corollary 1.3. h is torsion free of finite type over W [[ΓF ]] with hF /(Xp)p|phF pseudo
isomorphic to the Hecke algebra of Hr(X11(p),W ).

Actually if p ≥ 5, h is known to be free over W [[ΓF ]] and the pseudo isomorphism
as above is actually an isomorphism.

Let T be the local ring of the universal nearly ordinary Hecke algebra h acting non-
trivially on the Hecke eigenform associated to E. Let P ∈ Spf(T)(Qp) corresponding

to ρE, that is, ρT mod P ∼ ρE. Let T̂P = lim←−n TP/P
nTP for the localization TP .

Since ρE = TpE ⊗Qp is absolutely irreducible, by the technique of pseudo represen-

tation, we can construct the modular deformation ρT : G→ GL2(T̂P ) which satisfies
(K1–4); in particular, det ρT = N , because the central character is trivial. Since E is

modular over F , we have the surjective Qp-algebra homomorphism R → T̂P for the

localization-completion T̂P . Since T̂P is integral and of dimension d, we have

Corollary 1.4. If R ∼= K[[Xp]]p|p, then R ∼= T̂P .

The isomorphism R ∼= K[[Xp]]p|p is proven by showing R ∼= T̂P first (see Appendix).
Take a quaternion algebra B1/F such that B1 ⊗Q R ∼= M2(R)q × Hd−q with q ≤ 1

and B is ramified only at p1 (among finite places). Then at p1, we have a unique
maximal order R1 in Bp1. Then we define U11(p

n) to be the product of S11(p
n)(p1)

and R×
1 and define

Y11(p
n) = B×

1 \B×
1,A/U11(p

n)ZAC∞.

Then we define e1 = limn→∞ U(p(p1))n! acting on the dual Nn = Hq(Y11(p
n),Zp) of

the cohomology group Hq(Y11(p
n),Qp/Zp). Let Γ1 =

∏
p6=p1

Γp. We go through all
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the above process and define h1 ⊂ EndW [[Γ1]](lim←−n e1Nn). Since ρE (or corresponding

automorphic representation πE) is Steinberg at p1, by the Jacquet-Langlands corre-
spondence, we have a Hecke eigenvector f1 in Hq(Y11(p),Zp) giving rise to E. Then
we define T1 to be the local ring of h1 acting nontrivially on f1. Let P1 ∈ Spf(T1)(W )

be the point associated to ρE. We then have a deformation ρT1 : G → GL2(T̂1,P ) of
ρE. Since the central character is trivial, we have det ρT1 = N .

Theorem 1.5. We have

(1) h1 is torsion-free of finite rank over W [[Γ1]], and T̂1,P1
∼= K[[Xp2, . . . ,Xpd]];

(2) ρT1 restricted to Gal(F p1/Fp1) is isomorphic to ( εN ∗
0 ε ), where ε = ±1 is the

eigenvalue of Frobp1 on the étale quotient of TpE;
(3) There is a surjective algebra homomorphism T/Xp1T � T1 inducing an iso-

morphism T̂P/Xp1 T̂P
∼= T̂1,P1;

(4) There is a surjective algebra homomorphism T/(U(p1) − ε)T � T1 sending
T (n) to T (n), where U(p1) = U(pp1).

Here is a sketch of proof. The first assertion follows from construction; in other
words, it can be proven by the same way as the proof of Corollary 1.3. By the
Jacquet-Langlands correspondence, T covers T1. Any automorphic representation
π corresponding to a point of Spf(T1)(Qp) is Steinberg at p1 because B1 ramifies at
p1. Since points corresponding classical automorphic representation is Zariski dense in
Spf(T1), the Galois representation has to have the form as in (2). Thus the eigenvalue
of U(p1) of π is ±1 and the corresponding Galois representation has the form as in
(2). The assertion (1) implies (3). By (2), U(p1) is either ±1. Since U(p1) is a formal
function on the connected Spf(T1), U(p1) = ε is a constant, which implies (4). �

1.2. Proof of Theorem 1.1. Write for simplicity,Xj := Xpj , Fj = Fpj and pj = ppj .
By (3) and (4) of Theorem 1.5, U(p1) ≡ ε mod X1 is a constant independent of

Xj := Xpj for all j ≥ 2. Thus ∂U(p1)
∂Xj
|X1=0 = 0 for all j ≥ 2. Thus

det

(
∂U(pi)

∂Xj

)∣∣∣
X=0

=
∂U(p1)

∂X1

∣∣∣
X1=0

× det

(
∂U(pi)

∂Xj

)

i≥2,j≥2

∣∣∣
X=0

.

Since δpi([p, Fi]) = U(pi), we get from the formula we stated in the first lecture:

L(IndQ
F Ad(ρE)) = det

(
∂δp([p, Fp])

∂Xp′

)

p,p′

∣∣∣
X=0

∏

p

logp(γp)αp([p, Fp])
−1,
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the following new formula:

(1.1) L(IndQ
F Ad(ρE)) =

∂δp([p, F1])

∂X1

∣∣∣
X1=0

logp(γp1)αp1([p, F1])
−1

× det

(
∂δp([p, Fi])

∂Xj

)

i≥2,j≥2

∣∣∣
X=0

∏

j≥2

logp(γpj )αp([p, Fj])
−1.

Thus the result follows from the following result of Greenberg-Stevens:

Lemma 1.6. Let us write γ = γp1 . We have

∂δ1([p, F1])

∂X1

∣∣∣
X1=0

logp(γ)αp1([p, F1])
−1 =

logp(q1)

ordp(q1)

for δ1 = δp1 .

Proof. Since αp1([p, F1]) = 1 (split multiplicative reduction), we can forget about this
factor. Since the matrix of the linear operator L :

∏
pF−

p V/F+
p V →

∏
p F−

p V/F+
p V

induces L1 : F−
p1
V/F+

p1
V → F−

p1
V/F+

p1
V by our diagonalization of its matrix. This L1

comes from the subspace

L1 ⊂ Hom(Dab
1 ,F−

p1
V/F+

p1
V ) ∼= Hom(Dab

1 ,Qp)

for D1 = Gal(Qp/F1) has a generator φ0 = δ−1
1

∂δ1

∂X1

∣∣∣
X1=0

: Dab
1 → Qp. Thus by

definition
∂δ1([p, F1])

∂X1

∣∣∣
X1=0

logp(γ) = logp(γ)
φ0([p, F1])

φ0([γ, F1])
.

Let ρE = TpE⊗ZpQp, ρ̃E = (ρ mod (X2
1 ,X2, . . . ,Xd)), and write Q̃p = Qp[X1]/(X

2
1 ).

The character (δ1 mod X2
1 ) is an infinitesimal deformation of the trivial character

fitting into the following commutative diagram of D1-modules:

Q̃p(ε1)
↪→−−−→ ρ̃E

�−−−→ Q̃p(δ1)y
y

y
Qp(1) −−−→ ρE −−−→ Qp.

Twist this diagram by ε−1
1 N = δ1, getting a new diagram

Q̃p(1)
↪→−−−→ ρ̃E

�−−−→ Q̃p(δ
2
1)y

y
y

Qp(1) −−−→ ρE −−−→ Qp.

Once this type of diagram is obtained (with leftmost column given by Q̃p(1) � Qp(1)),
by a general result of Greenberg-Stevens in such a situation (see [GS1] (2.3.4) and
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Theorem 1.14 in the text), we get

∂δ2
1

∂X1

([q1,Qp])
∣∣
X1=0

= 0⇒ ∂δ1

∂X1

([q1,Qp])
∣∣
X1=0

= 0.

Write q1 = pau for a = ordp(q1) and u ∈ Z×
p . Then logp(u) = logp(q1). We have

δ1([q1,Qp]) = δ1([p,Qp])
aδ1([u,Qp]) = δ1([p,Qp])

a(1 +X1)
− logp(u)/ logp(γ)

(because N ([u,Qp]) = u−1). Differentiating this identity with respect to X1, we get
from δ1([u,Qp])|X1=0 = δ1([p,Qp])|X1=0 = 1

a
∂δ1([p1,Qp])

∂X1

∣∣∣
X1=0

−
logp(q1)

logp(γ)
= a

∂δ1([p1,Qp])

∂X1

∣∣∣
X1=0

−
logp(u)

logp(γ)
= 0.

From this, we conclude

logp(γ)
∂δ1([p1,Qp])

∂X1

∣∣∣
X1=0

=
logp(q1)

ordp(q1)
.

�

The fixed field of the kernel of φ0 is a Zp-extension M∞/Qp (F1 = Qp). Since

L1 3 φ 7→ φ([γ,Qp])
logp γ

∈ Qp is surjective, M∞ ramifies fully. Then by local class field

theory,
⋂∞
n=1NMn/Qp(M

×
n ) has a rank 1 torsion-free part, which contains q0 = pbv with

a 6= 0 and v ∈ Z×
p . The quantity

logp(q0)

ordp(q0)
∈ Qp is determined uniquely independent of

the choice of q0, and we now prove

Proposition 1.7.

logp(γ)
∂δ1([p1,Qp])

∂X1

∣∣∣
X1=0

=
logp(q0)

ordp(q0)
.

Proof. Let φ0 = δ−1
1

∂δ1

∂X1
: Dab

1 → Qp. Let M∞/Qp be the composite of all Zp-

extensions of Qp; so, by local class field theory, Gal(M∞/Qp) ∼= Z2
p. Then [q0,Qp] ∈

Gal(M∞/M∞) again by local class field theory, and by definition, φ0([q0,Qp]) = 0.
Since [q0,Qp] = [v,Qp][p,Qp]

b (b = ordp(q0)) we have 0 = φ0([q0,Qp]) = φ0([v,Qp]) +
bφ0([p,Qp]). Writing Mur

∞ /Qp for the unique unramified Zp-extension and M+
∞/Qp for

the cyclotomic Zp-extension, the restriction of φ0 to Γ+ = Gal(M+
∞/Qp) is a constant

multiple of logp ◦Np for the cyclotomic character Np; i.e., φ0|Γ+ = x(logp ◦Np) for
x ∈ Q×

p . Since logp(Np([v,Qp])) = logp(v
−1) = − logp(q0), we have x logp(v

−1) +

bφ0([p,Qp]) = 0. Thus L(Ad(TpE)) = φ0([p,Qp])/x =
logp(q0)

ordp(q0)
. �
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1.3. The non-split case. We give a detailed proof of Theorem 1.1 when p does not
split completely in F/Q.

We prepare some general facts. The following is a slight generalization of [GS1]
Section 2: Let K and T be a finite extension of Qp and V be a two dimensional
vector space over T on which D := Gal(K/K) acts. We write H i(?) for H i(D, ?). By
definition, H1(V ) = Ext1

T [D](T, V ), and hence, there is a one-to-one correspondence:
{

nontrivial extensions
of T by V

}
↔
{

1-dimensional subspaces
of H1(V )

}
.

From the left-hand side to the right hand side, the map is given by (V ↪→ X � T ) 7→
δX(1) for the connecting map T = H0(T )

δX−→ H1(V ) of the long exact sequence
attached to (V ↪→ X � T ). Out of a 1-cocycle c : D → V , one can easily construct
an extension (V ↪→ X � T ) taking X = V ⊕ T and letting D acts on X by
g(v, t) = (gv + t · c(g), t), and [c] 7→ (V ↪→ X � T ) gives the inverse map.

By Kummer’s theory, we have a canonical isomorphism:

H1(T (1)) ∼=

(
lim←−
n

K×/(K×)p
n

)
⊗Zp T.

We write γq ∈ H1(T (1)) for the cohomology class associated to q⊗1 for q ∈ K×. The
class γq is called the Kummer class of q. A canonical cocycle ξq giving the class γq
is given as follows. Define ξn : D → µpn by ξn(σ) = (q1/pn)σ−1, which is a 1-cocycle.
Then ξq = lim←−n ξn having values in Zp(1) ⊂ T (1).

Suppose we have a non-splitting exact sequence of D-modules 0 → T (1) → V →
T → 0 with the splitting field

⋃
nK[µpn, q

1/pn] for q ∈ K with 0 < |q|p < 1. We have
proven

Proposition 1.8. If V is isomorphic to the representation σ 7→
(N (σ) ξq(σ)

0 1

)
, then

for the extension class of [V ] ∈ H1(T (1)), we have T [V ] = Tγq. In particular, Tγq is

in the image of the connecting homomorphism H0(T )
δ0−→ H1(T (1)) coming from the

extension T (1) ↪→ V � T .

Corollary 1.9. Let E/K be an elliptic curve. If E has split multiplicative reduction
over W , the extension class of [V ] for the p-adic Tate module V is in QpγqE for the
Tate period qE ∈ K×.

Write D = Gal(Qp/Qp) ⊃ D. We consider V = Ind
Qp
K V := IndD

D V . Then we have
a D-stable exact sequence 0 → F+V → V → V/F+V → 0 such that D acts by N
on F+V . Thus F+V is one dimensional. We then have the exact sequence of the
induced modules:

0→ Ind
Qp
K F+V → Ind

Qp
K V → Ind

Qp
K (V/F+V )→ 0.
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We put F+V := Ind
Qp
K F+V , and define F00V by the maximal subspace of V stable

under D such that D acts on F00V/F+V trivially. In other words, we have

H0(D,V/F+V) = F00V/F+V.
Similarly, we define F11V ⊂ V to be the smallest subspace stable under D such that
D acts on F+V/F11V by N ; so, we have

H0(D,F+V(−1)) = (F+V/F11V)(−1).

Since Ind
Qp
K (V/F+V ) ∼= Ind

Qp
K 1 and Ind

Qp
K F+V ∼= Ind

Qp
K F+N ∼= (Ind

Qp
K 1) ⊗ N ,

we find dimT (F+V/F11V) = dimT (F00V/F+V) = 1, because H0(D, Ind
Qp
K 1) ∼=

H0(D, Ind
Qp
K 1) ∼= T . Thus we get an extension

(1.2) 0→ F+V/F11V → F00V/F11V → F00V/F+V → 0

of T [D]-modules.

Let T̃ := T [ε] = T [t]/(t2) with ε ↔ (t mod t2). A T̃ [D]-module Ṽ is called an

infinitesimal deformation of V if Ṽ is T̃ -free of rank 2 and Ṽ /εṼ ∼= V as T [D]-

modules. Since the map ε : Ṽ � V ⊂ Ṽ given by v 7→ εv is Galois equivariant, we
have an exact sequence of D-modules

0→ V → Ṽ → V → 0

if V [ϕ] is an infinitesimal deformation of V . Pick an infinitesimal character ψ : D →
T̃× with ψ mod (ε) = 1. Define T̃ (ψ) for the space of the character ψ. Obviously,
dψ
dε

: D → T is a homomorphism; so, dψ
dε
∈ Hom(D,T ) = H1(T ). Since the extension

Ṽ is split if and only if dψ
dε

= 0, we get

Proposition 1.10. The correspondence T̃ (ψ) ↔ dψ
dε
∈ H1(T ) gives a one-to-one

correspondence:{
Nontrivial infinitesimal

deformations of T

}
↔
{

1-dimensional
subspaces of H1(T )

}
,

and we have T [Ṽ (ψ)] = T dψ
dε

in H1(T ).

We have the restriction map Res : H1(D, T (m)) → H1(T (m)) and the transfer
map Tr : H1(T (m)) → H1(D, T (m)). We have the cup product pairing giving Tate
duality and the following commutative diagram:

〈·, ·〉 : H1(T (1)) × H1(T ) → H2(T (1)) ∼= T
Tr ↓ ↑ Res ‖

〈·, ·〉 : H1(D, T (1)) × H1(D, T ) → H2(D, T (1)) ∼= T.

By Shapiro’s lemma (and the Frobenius reciprocity; cf., [HMI] Section 3.4.4), we get

Lemma 1.11. We have Tr([V ]) = [F00V/F11V] ∈ H1(D, T (1)) for the class [V ] ∈
H1(T (1)) of the extension T (1) ↪→ V � T .
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Proof. Decompose D =
⊔
σ∈Σ Dσ; so, Σ ∼= Homfield(K,Qp). Then for τ ∈ D, we

have στ = τσσ
′ for σ′ ∈ Σ and τσ ∈ D. We look at the matrix form of the induced

representation. If the matrix form of V is given by
(
N ξ
0 1

)
for a 1-cocycle ξ : D →

T (1), the cocycle giving the extension T (1) ↪→ F00V/F11V � T (1) is given by
τ 7→

∑
σ∈Σ ξ(τσ)

σ, which represents the class of Tr([ξ]). Here D acts on the right on
Zp(1) = lim←−n µpn following the tradition of Galois action on roots of unity ζ 7→ ζσ. �

Corollary 1.12. Let E/K be an elliptic curve. If E has split multiplicative reduction

over W , the extension class of [F00V/F11V] for V = Ind
Qp
K V with the p-adic Tate

module V is in QpγNK/Qp(qE) for the Tate period qE ∈ K×.

Proof. We keep the notation introduced in the proof of the above lemma. Consider

the cocycle ξn(τ ) = (q
1/pn

E )τ−1 of D with values in µpn. Then we have

Tr(ξn)(σ) =
∏

σ∈Σ

(q
1/pn

E )(τσ−1)σ =
∏

σ∈Σ

(q
1/pn

E )σ(τ−1) = ((NK/QpqE)1/pn)τ−1.

Thus Tr([V ]) = [F00V/F11V] is represented by the cocycle ξ given by limn Tr(ξn) for
Tr(ξn)(τ ) = (NK/Qp(qE)1/pn)τ−1, which implies that Tr([V ]) = γNK/Qp(qE). �

Note that

H1(D, T ) ∼= Hom(D, T ) = Hom(Dab, T ) ∼= T 2,

where the last isomorphism is given by

Hom(Dab, T ) 3 φ 7→ (
φ([γ,Qp])

logp(γ)
, φ([p,Qp])) ∈ T 2

for γ ∈ Z×
p of infinite order. This follows from class field theory and [x,Qp] for x ∈ Q×

p

is the local Artin symbol. Since the duality is perfect, for any line L in H1(D, T ),
one can assign its orthogonal complement L⊥ in H1(D, T (1)) under the Tate duality
〈·, ·〉. Thus we have

Proposition 1.13. Suppose K = Qp. The correspondence of a line in H1(D, T ) and
its orthogonal complement in H1(D, T (1)) gives a one-to-one correspondence:

{
Nontrivial extensions

of T by T (1) as T [D]-modules

}
↔
{

nontrivial infinitesimal
deformations of T over D

}
.

Let σq = [q,Qp]
−1 for the Artin symbol [x,Qp] normalized so that N ([u,Qp]) = u−1

for u ∈ Z×
p and [p,Qp] is the arithmetic Frobenius element. Then we have 〈γq, ξ〉 =

ξ(σq) for γq ∈ H1(D,Qp(1)) and ξ ∈ Hom(D,Qp) = H1(D,Qp). Now we are ready to
prove the following version of a theorem of Greenberg-Stevens (cf. [GS1] 2.3.4):

Theorem 1.14. Let E/K be an elliptic curve with split multiplicative reduction and

let ψ : Gal(Qp/Qp) → Q̃p

×
be a nontrivial character which is ≡ 1 modulo ε. Let V
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be the p-adic Tate module of E, V be the induced Galois representation Ind
Qp
K V and

qE ∈ K× be the Tate period of E. Then the following statements are equivalent:

(a) dψ
dε

(σNK/Qp(qE)) = 0;

(b) W := F00V/F11V corresponds to Q̃p(ψ) under the correspondence of Propo-
sition 1.13;

(c) There is an infinitesimal deformation W̃ of W and a commutative diagram:

Q̃p(1)
↪→−−−→ W̃ �−−−→ Q̃p(ψ)y

y
y

Qp(1) −−−→
↪→

W −−−→
�

Qp,

in which the top row is an exact sequence of Q̃p[D]-modules and the vertical
map is the reduction modulo ε.

Proof. Since 〈γq, ξ〉 = ξ(σq) for ξ ∈ H1(D,Qp) = Hom(D,Qp) and γq ∈ H1(D,Qp(1)),

applying these formulas to ξ = dψ
dε

, we get (a) ⇔ (b) by the definition of the corre-
spondence in Proposition 1.13.

The equivalence (b) ⇔ (c) can be proven in exactly the same manner as in the
proof of [GS1] 2.3.4. Here is the argument proving (b) ⇒ (c). Let c be a 1-cocycle
representing γQ for Q = NK/Qp(qE). Then D×D 3 (σ, τ ) 7→ c(σ)dψ

dε
(τ ) ∈ Qp(1) is the

2-cocycle representing the cup product γQ ∪ [Q̃p(ψ)], which vanishes by (b). Thus it
is a 2-coboundary:

c(σ)
dψ

dε
(τ ) = ∂ξ(σ, τ ) = ξ(στ )−N (σ)ξ(τ )− ξ(σ)

for a 1-chain ξ : D → Qp(1). Then defining an action of σ ∈ D on Q̃p

2
via the

matrix multiplication by
(

N (σ) c(σ)+ξ(σ)ε
0 ψ(σ)

)
, the resulting Q̃p[D]-module W̃ fits well in

the diagram in (c).
Conversely suppose we have the commutative diagram as in (c), which can be

written as the following commutative diagram with exact rows and columns:

0 0 0
↓ ↓ ↓

0 −→ Qp(1) −→ W −→ Qp −→ 0
↓ ↓ ↓

0 −→ Q̃p(1) −→ W̃ −→ Q̃p −→ 0
↓ ↓ ↓

0 −→ Qp(1) −→ W −→ Qp −→ 0
↓ ↓ ↓
0 0 0
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The connecting homomorphism d : H1(D,Qp(1)) → H2(D,Qp(1)) vanishes because
the leftmost vertical sequence splits. On the other hand, letting δψ : H0(D,Qp) →
H1(D,Qp) stand for the connecting homomorphism of degree 0 coming from the
rightmost vertical sequence, and letting δi : H i(D,Qp) → H i+1(D,Qp(1)) be the
connecting homomorphism of degree i associated to the bottom row (and also to the
top row). By the commutativity of the diagram, we get the following commutative
square:

H0(D,Qp) = Qp
δ0−−−→ H1(D,Qp(1))

δψ

y
yd=0

H1(D,Qp) −−−→
δ1

H2(D,Qp(1)).

Since δψ(1) = dψ
dε

, we confirm dψ
dε
∈ Ker(δ1). By Proposition 1.8, γQ is the in the

image of δ0. Thus the assertion (b) follows if we can show that Ker(δ1) is orthogonal
to Im(δ0).

Since V = IndQ
K V is the p-adic Tate module of the principally polarized abelian

variety A = ResK/QpE/K (the Weil restriction), V has self dual under the polarization
pairing, which induces a self duality ofW and also the self (Cartier) duality of the ex-
act sequence 0→ Qp(1) →W → Qp → 1. In particular the inclusion ι : Qp(1) →W
and the projection π :W � Qp(1) are mutually adjoint under the pairing. Thus the
connecting maps δ0 : H0(D,Qp)→ H1(D,Qp(1)) and δ1 : H1(D,Qp)→ H2(D,Qp(1))
are mutually adjoint each other under the Tate duality pairing. In particular, Im(δ0)
is orthogonal to Ker(δ1). �

Take a prime p|p in F , and let D = Gal(F p/Fp) and D = Gal(F p/Qp). We write
I (resp. I) for the inertia group of D (resp. D).

Lemma 1.15. Let ρA : Gal(Q/F )→ GL2(A) be a deformation of ρF for an artinian
local K-algebra A with residue field K. Write ρA|D =

( εA ∗
0 δA

)
with δA ≡ αp mod mA.

Suppose that αp can be extended to a character α̃p : D → K×. If δA|I factors through

Gal(Fp[µp∞]/Fp), the character δA extends to a unique character δ̃A of D with values

in A× such that δ̃A ≡ α̃p mod mA.

Proof. Let F ab
p (resp. F ur

p ) be the maximal abelian extension of Fp (resp. the maximal
unramified extension of Fp). Then we have

Fp[µp∞ ] ⊂ F ur
p [µp∞ ] = FpQur

p [µp∞] = FpQab
p .

Thus Gal(FpQur
p [µp∞]/Fp) can be identified with the subgroup Gal(Qab

p /Qab
p ∩ Fp) of

Gal(Qab
p /Qp) of finite index. Since δA is a character of Gal(FpQur

p [µp∞]/Fp), regarding

it as a character of Gal(Qab
p /Qab

p ∩ Fp), we only need to extend it to Gal(Qab
p /Qp).

Since Fp ∩ Qab
p /Qp is a finite Galois extension with an abelian Galois group ∆, by

the theory of the Schur multiplier, the obstruction of extending character lies in
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H2(∆, A×) (see [MFG] Section 3.3.5). Since δA ≡ αp mod mA, the obstruction class
Ob(δA) ≡ Ob(αp) = 0 mod mA. Thus Ob(δA) ∈ H2(∆, 1 + mA). Since 1 + mA is
uniquely divisible (by log : 1 + mA

∼= mA as K-vector space), we get the vanishing

H2(∆, 1+mA) = 0 for the finite group ∆. Then we can extend δA to δ̃A with δ̃A ≡ α̃p

mod mA as proven in [MFG] Section 5.4. If δ′ is another extension, we find δ̃−1
A δ′ is a

character of ∆, which has to be trivial by the condition δ̃A ∼= α̃p mod mA. Thus the
extension is unique. �

We recall the theorem in the general case. Order the prime factors of p as p1, . . . , pg.
We write Fi = Fpi and Ni for the norm map NFi/Qp : Fi → Qp. Here we do not assume
that p splits completely in F/Q. Take an elliptic curve E/F . If E is split multiplicative
at pj for j = 1, 2, . . . , k (k ≤ g) with Tate period qi ∈ Fi at pi for i ≤ k and having
ordinary good reduction at pi with i > k, we find

Theorem 1.16. Assume that R ∼= Qp[[Xp]]p|p. Then for the local Artin symbol [p, Fp],
we have for ρE = TpE

L(IndQ
F Ad(ρE)) =

(
k∏

i=1

logp(Ni(qi))

ordp(Ni(qi))

)
det

(
∂δp([p, Fi])

∂Xj

)

i>k,j>k

∣∣∣
X=0

∏

i>k

logp(γpi)

αp([p, Fi])
,

where γp is the generator of N (Gal(Fp[µp∞]/Fp)) by which we identify the group al-
gebra W [[Γp]] with W [[Xp]].

Proof. By the same argument which proves the formula (1.1) (taking the locally
cyclotomic Hecke algebra introduced in [HMI] Section 3.2.9), we get

(1.3) L(IndQ
F Ad(ρE)) =

k∏

i=1

∂δp([p, Fi])

∂Xi

∣∣∣
Xi=0

logp(γpi)αpi([p, Fi])
−1

× det

(
∂δp([p, Fi])

∂Xj

)

i≥k,j≥k

∣∣∣
X=0

∏

j≥k

logp(γpj )αp([p, Fj])
−1.

Let V = TpE⊗Zp Qp for the p-adic Tate module TpE of E. The global representation

V = IndQ
F V has decreasing filtration F iV such that an open subgroup of the inertia

group Ip at p acts on F iV/F i+1V by the i-th power of the cyclotomic character N
and F1V ( V. Put F+V = F1V. Write D = Gal(Qp/Qp). Let F00V be the maximal
D-stable subspace of V containing F+V such that any vector in F00V/F+V is fixed
by D. Similarly, let F11V be the minimal D-stable subspace of V contained in F+V
such that D acts on F+V/F11V by N . We may regard V as a Gal(Qp/Fj)-module,

and consider Vj = Ind
Qp
Fj
V . Then again we have F00Vj ⊃ F11Vj as defined above
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(1.2) for K = Fj. From [HMI] (3.4.4), we see easily that

F00V/F11V ∼=
k⊕

j=1

F00Vj
F11Vj

as D-modules. Because of this decomposition, we can fix j and only need to compute
the L-invariant for the j-th factor. We write D = Gal(Qp/Fj) ⊂ D. We consider the
universal locally cyclotomic deformation ρ of V under the conditions (K1–4) and con-

sider Ṽj = (ρ mod mj) for mj := (X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xg) ⊂ Qp[[Xj]]j=1,...,g.

Again we consider Ṽj := Ind
Qp
Fj
Ṽj . We put F+Ṽj = Ind

Qp
Fj
F+Ṽj . We have D-stable

filtration F+Ṽj ⊂ Ṽj such that D acts on F+Ṽj\Ṽj by the nearly ordinary character

δj := (δj mod (X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xg)).

The character δj satisfies δj ≡ αpj = 1 mod (Xj) for the trivial character 1 of
D. Since αpj can be extended to 1 : D → Q×

p , by Lemma 1.15, δj has a unique

extension δ̃j : D → Q̃p

×
with δ̃j ≡ 1 mod (Xj) (identifying Q̃p with Qp[Xj]/(Xj)

2).

Ind
Qp
Fj
δj ∼= δ̃j ⊗ Ind

Qp
Fj

1. Thus we have a unique subspace F00Ṽj ⊂ Ṽj such that

F00Ṽj/F+Ṽj = H0(D, Ṽj/F+Ṽj(δ̃−1
j )). The Q̃p-module F00Ṽj/ Ind

Qp
Fj
F+Ṽj is free of

rank 1 over Q̃p.
Write (ρ|D)ss = δj ⊕ εj, and define again

εj := (εj mod (X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xg)).

Then εj ≡ N mod (Xj), and again applying Lemma 1.15 to εj, it has a unique

extension ε̃j : D → Q̃p

×
with ε̃j ≡ N mod (Xj). Thus Ind

Qp
Fj
F+Ṽj = ε̃j ⊗ Ind

Qp
Fj

1.

Then we have a unique subspace F11Ṽj ⊂ F+Ṽj such that H0(D,F+Ṽj(ε̃−1
j )) =

F+Ṽj/F11Ṽj. Again F+Ṽj/F11Ṽj is Q̃p-free of rank 1. By the uniqueness of the

extensions, we have δ̃j ε̃j = N over D, because δjεj = N over D.

Since we have the D-equivariant duality pairing Ṽj × Ṽj → Q̃p(1) by the fixed

determinant condition, the duality extends to D-equivariant duality pairing Ṽj×Ṽj →
Q̃p(1), and we have F11Ṽj ⊂ Ind

Qp
Fj
F+Ṽj by (F00Ṽj)⊥. The matrix form of the D-

representation: F00Ṽj/F11Ṽj is
(
ε̃j ∗
0 δ̃j

)
. Twist F00Ṽj/F11Ṽj by χ = ε̃−1

j N ; then,

F00Ṽj/F11Ṽj(χ) has the matrix form
(N ∗

0 ψj

)
for ψj = δ̃j ε̃

−1
j N . Since detρ = N , we

have δ̃j ε̃j = N , and hence ψj = δ̃2
j . Then F00Ṽj/F11Ṽj is an infinitesimal extension
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of F00Vj/F11Vj making the following diagram commutative:

Q̃p(1)
↪→−−−→ F00Ṽj/F11Ṽj(χ)

�−−−→ Q̃p(ψj)y
y

y
Qp(1) −−−→

↪→
F00Vj/F11Vj −−−→

�
Qp.

This diagram satisfies the condition (c) of Theorem 1.14, and

∂ψj
∂Xj
|Xj=0([Nj(qj),Qp]) = 2δ̃j

∂δ̃j
∂Xj
|Xj=0([Nj(qj),Qp]) = 0

⇒ ∂δ̃j
∂Xj
|Xj=0([Nj(qj),Qp]) = 0.

Write Nj(qj) = pau for a = ordp(Nj(qj)) and u ∈ Z×
p . Then logp(u) = logp(Nj(qj)).

Write dj = [Fj : Qp]. Since [p,Qp]
dj = [Nj(p),Qp] = [p, Fj]|Qabp and [u,Qp]

dj =

[Nj(u),Qp] = [u, Fj]|Qabp , we have

δ̃j([N(qj),Qp]
dj) = δj([p, Fj])

aδj([u, Fj]) = δj([p, Fj])
a(1 +Xj)

− logp(u)/ logp(γpj )

(because N ([u,Qp]) = u−1). Differentiating this identity with respect to Xj, we get
from δj([u, Fj])|Xj=0 = δj([p, Fj])|Xj=0 = αpj ([p, Fj]) = 1

a
∂δj
∂Xj

∣∣∣
Xj=0

([p, Fj])−
logp(u)

logp(γpj )
= 0

From this we conclude

∂δp([p, Fj])

∂Xj

∣∣∣
Xj=0

logp(γpj )αpj ([p, Fj])
−1 =

logp(Nj(qj))

ordp(Nj(qj))
,

since αpj([p, Fj]) = 1 (by split multiplicative reduction of E at pj with j ≤ k). From
this, the desired formula follows from (1.3). �
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