
L-INVARIANTS OF CM FIELDS

HARUZO HIDA

1. Lecture 4

Let p be an odd prime. Let M/F be a totally imaginary quadratic extension of
the base totally real field F . We study the adjoint square Selmer group when the
Galois representation is an induction of a Galois character of GM := Gal(M (p)/M).
Put GF := Gal(M (p)/F ). For simplicity, we assume that p > 2 totally splits in M/Q.
We relate the Selmer group with a more classical Iwasawa module of a quadratic
extension of F , and from the torsion property of the Selmer group already proven,
we deduce some (new) torsion property of such classical Iwasawa modules.

1.1. Ordinary CM fields and their Iwasawa modules. Let OM be the integer
ring of M . We consider Z = lim←−n

ClM(pn) for the ray class group ClM(pn) of M

modulo pn. Let ∆ be the maximal torsion subgroup of Z, and put ΓM = Z/∆,
which has a natural action of Gal(M/F ). We split Z = ∆ × ΓM . We define Γ+ =
H0(Gal(M/F ),ΓM ) and Γ− = ΓM/Γ

+. Since p > 2, the action of Gal(M/F ) splits the
extension Γ+ ↪→ ΓM � Γ−, and we have a canonical decomposition ΓM = Γ+ × Γ−.
Write π− : Z → Γ−, π+ : ΓM → Γ+ and π∆ : Z → ∆ for the three projections. Take

a character ϕ : ∆ → Q×
, and regard it as a character of Z through the projection:

Z � ∆.
Let M∞ be the composite of all Zp-extensions of M . Then by class field theory,

M∞ is the subfield of the ray class filed of M modulo p∞ fixed by ∆. Let Q∞/Q be
the cyclotomic Zp-extension. Let M cyc

∞ be the composite MQ∞/M . Define M−
∞ (resp.

M+
∞) for the fixed subfield of Γ− (resp. Γ+). Since M cyc

∞ is abelian over F , we have
M cyc

∞ ⊂ M+
∞ and a projection πcyc : Γ+ → Gal(M cyc

∞ /M) ⊂ 1 + pZp. The Leopoldt
conjecture for F asserts that πcyc is an isomorphism; in other words, M+

∞ = M cyc
∞ . The

extension M−
∞/M is called the anticyclotomic tower over M . Thus if the Leopoldt

conjecture holds for F , M∞ is the composite of the cyclotomic Zp-extension M cyc
∞ and

the anticyclotomic Z[F :Q]
p –extension M−

∞.

To introduce Iwasawa modules for the multiple Zp-extensions M?
∞/M , we fix a CM

type Σ, which is a set of embeddings of M into Q such that IM = Σ t Σc for the
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generator c of Gal(M/F ). Over C, an abelian variety with complex multiplication by
M has C-points isomorphic to CΣ/Σ(a) for a lattice a in M (see [ACM] 5.2), where
Σ(a) = {(σ(a))σ∈Σ ∈ CΣ|a ∈ a}. By composing ip, we write Σp for the set of p-adic
places induced by ip ◦ σ for σ ∈ Σ. We assume

(spt) Σp ∩ Σpc = ∅.
This is to guarantee the abelian variety of CM type Σ to have ordinary good reduction
modulo p (whose Galois representation is hence ordinary at all p|p).

Writing M(p∞) for the ray class field over M modulo p∞, we identify Z with
Gal(M(p∞)/M) via the Artin reciprocity law. Fix a character ϕ of ∆. We then
define M∆ by the fixed field of Γ in M(p∞); so, Gal(M∆/M) = ∆.

Since ϕ is a character of ∆, ϕ factors through Gal(M?
∞M∆/M) for ? indicating

one of +,−, cyc or “nothing”. When nothing is attached, it refers to the object
for the full multiple Zp-extension M∞. Let L?

∞/M
?
∞M∆ be the maximal p–abelian

extension unramified outside Σp. Each γ ∈ Gal(L∞/M) acts on the normal subgroup
X? = Gal(L?

∞/M
?
∞M∆) continuously by conjugation, and by the commutativity of

X?, this action factors through Gal(M∆M
?
∞/M). Then we look into the compact

p-profinite Γ?–module: X?[ϕ] = X? ⊗Zp[∆],ϕ W , where Γ? = Gal(M?
∞/M). We study

when X?[ϕ] is a torsion Iwasawa module over Λ? = W [[Γ?]]. The module X?[ϕ]
is generally expected to be torsion of finite type over Λ? for the naturally defined
multiple Zp-extensions M?

∞.

The torsion property of Xcyc[ϕ] over Λcyc is classically known (e.g., [HT2] Theorem
1.2.2). This implies

Theorem 1.1. The modules X[ϕ],X+[ϕ] and Xcyc[ϕ] are torsion modules over the
corresponding Iwasawa algebra Λ,Λ+ and Λcyc, respectively.

We refer this result to [HT2] Theorem 1.2.2 (which was originally due to R. Green-
berg). We study the anticyclotomic Iwasawa module X−[ϕ] over Λ− from our new
view point of Galois deformation theory. As is well known, X−[ϕ] is a Λ−-module of
finite type, and under mild assumptions (including anticyclotomy of ϕ), we will prove
the torsion property of X−[ϕ] in Theorem 1.3.

The Σ-Leopoldt conjecture for abelian extensions of M is almost equivalent to the
torsion property of X−[ϕ] over Λ− for all possible ϕ (see [HT2] Theorem 1.2.2). Here,
for an abelian extension L/M with integer ring OL, the Σ-Leopoldt conjecture asserts

the closure O×
L of O×

L in LΣ =
∏

p∈Σp
Lp satisfies

dimQ(O×
L ⊗Z Q) = dimQp(O

×
L ⊗Zp Qp).

If X−[ϕ] is a torsion Λ−-module, we can think of the characteristic element F−(ϕ) ∈
Λ− of the module X−[ϕ]. The anticyclotomic main conjecture (cf. [HT] Conjec-
ture 2.2) predicts the identity (up to units) of F−(ϕ) and the projection of (the
ϕ-branch of) the Katz p-adic L-function (constructed in [K] and [HT1]) under π−.
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1.2. Anticyclotomic Iwasawa modules. A character ψ of ∆ is called anticyclo-
tomic if ψ(cσc−1) = ψ−1(σ) for a complex conjugation c ∈ Gal(Q/F ). Fix an algebraic
closure F of F . Regarding ϕ as a Galois character, we define ϕ−(σ) = ϕ(cσc−1σ−1)
for σ ∈ Gal(F/M). Then ψ := ϕ− is anticyclotomic.

We define a Galois character ϕ̃ : GF → W [[Γ−]] by ϕ̃(σ) = ϕ(σ)(σ|M−
∞

)1/2, where

(σ|M−
∞

)1/2 is the unique square root of (σ|M−
∞

) in Γ− and (σ|M−
∞

) ∈ Γ− is regarded as a
group element in Γ− ⊂W [[Γ−]]. Note that ϕ̃−(σ) = ϕ̃(cσc−1σ−1) = ψ(σ)σ|M−

∞
. Then

we consider IndF
M(ϕ̃) : Gal(F/F )→ GL2(W [[Γ−]]). We write αM/F for the quadratic

character of Gal(F/F ) identifying Gal(M/F ) with {±1}.
Lemma 1.2. We have

(1) det(IndF
M χ) = αM/Fχ|F×

A
and Tr(IndF

M χ(Frobl)) =
∑

b⊂OM ,NM/F (b)=l χ(b) for

a prime l of F unramified for IndF
M χ, identifying a character χ of Gal(F/M)

with a character of M×
A(∞)/M

× by the Artin symbol,

(2) Ad(IndF
M(ϕ̃)) ∼= αM/F ⊕ IndF

M(ϕ̃−) as GF -modules.

Since IndF
M(ϕ̃)|GM

= ϕ̃ ⊕ ϕ̃c with ϕ̃c(σ) = ϕ̃(cσc−1), we define F+
p IndF

M ϕ̃ = ϕ̃ for

p ∈ Σp. In Lecture 2, we have already defined F±
p Ad(IndF

M ϕ̃) and the Selmer group

SelF (Ad(IndF
M ϕ̃) ⊗Zp (W [[Γ−]])∗). Since the image of F+

p (Ad(IndF
M ϕ̃)) in αM/F is

trivial in the above decomposition in Lemma 1.2 and the image of F+
p (Ad(IndF

M ϕ̃))

is given by F+
p (IndF

M (ϕ̃−)), we get (cf. [HMI] Exercise 1.12 and Corollary 3.81)

SelF (Ad(IndF
M (ϕ̃)⊗W [[Γ−]] (W [[Γ−]])∗)

=SelF
(
αM/F ⊗Zp (W [[Γ−]])∗

)
⊕ SelF (IndF

M(ϕ̃−)⊗W [[Γ−]] (W [[Γ−]])∗)

=Hom(Cl−M ⊗Z W [[Γ−]],Qp/Zp)⊕ SelM((ϕ̃−)⊗W [[Γ−]] W [[Γ−]]∗),

where Cl−M is the quotient of CLM by the image of ClF (the order of Cl−M is equal
to the order of the αM/F -eigenspace of ClM up to a power of 2). By the definition of
the Selmer group, we note that

(1.1) SelM (ϕ̃− ⊗W [[Γ−]] (W [[Γ−]])∗) ∼= Hom(X−[ϕ−],Qp/Zp),

which shows

Theorem 1.3. Let the notation be as above. Then we have

Sel∗F (Ad(IndF
M(ϕ̃))) ∼=

(
Cl−M ⊗Z W [[Γ−]]

)
⊕X−[ϕ−]

as W [[Γ−]]-modules. Moreover X−[ϕ−] is a torsion W [[Γ−]]-module without excep-
tional zero if ψ := ϕ− satisfies the following conditions:

(at1) The character ψ has order prime to p.
(at2) The local character ψP is non-trivial for all P ∈ Σp.
(at3) The restriction ψ∗ of ψ to Gal(F/M∗) for the composite M∗ of M and the

unique quadratic extension inside F [µp] is non-trivial.
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The first assertion follows from the argument given as above. The torsion property
follows from the theorem of Taylor–Wiles and Fujiwara and the propositions in the
following appendix. In [HMI] Theorem 5.33, it is checked under assumptions milder
than (at1–3) imply the assumption of the theorem of Taylor–Wiles and Fujiwara.

1.3. The L-invariant of CM fields. Consider the universal couple (RF , %) deform-
ing ρF = IndF

M ϕ mod mW among W -deformations ρA into GL2(A) for proartinian
W -algebras A with residue field W/mW satisfying the following conditions

(W1) unramified outside p;
(W2) ρA|Gal(Qp/Fp)

∼= (
∗ ∗
0 αA,p ) with αA,p ≡ αp mod mA and αA,pα

−1
p |Ip factoring

through Gal(Fp[µp∞]/Fp);
(W3) det(ρA) = det ρ;
(W4) ρA ≡ ρ mod mA,

We knowRF
∼= T by Fujiwara (see Appendix). Since dimSpf(W [[Γ−]]) = dimSpf(T),

Spf(W [[Γ−]]) gives an irreducible component of Spf(RF ). Write I = W [[Γ−]] simply.
Let πI : T = RF � I be the projection (which factors through πcyc). We would
like to compute the L-invariant of the component I. Thus we need to compute
a(pp) = πI(U(pp)). The following fact follows from the fact IndF

M φ|GM
= φ⊕ φc.

Lemma 1.4. Let the notation be as above. Then we have a(pp) = ϕ̃([pP,MP]) for
the prime factor P ∈ Σc

p of p.

Define the character κ : Gal(F/M) → (Λ−)× by κ(σ) = (σ|M−
∞

)1/2. Then ϕ̃ = λκ,

and we write κI = πI ◦ κ : Gal(F/M) → I×. Then, κI restricted to the inertia group
IP at P factors through the projection: IP → Gal(Qp[µp∞]/Qp) ∼= Z×

p . Since the

W [[ΓF ]]-algebra structure of I is induced by the nearly ordinary character of IndF
M κI

(restricted to the inertia group IP), for uP ∈ O×
M,P (P ∈ Σc

p), we have

(1.2) κI([uP,MP]) = (1 +Xp)
− logp(Np(uP))/ logp(γp),

where p = P ∩ O, Np : MP = Fp → Qp is the norm map and γp is the generator
of Γp := (1 + pZp) ∩ Np(O

×
p ). Choose an element α(P) ∈ M so that Ph = (α(P))

for each P ∈ Σc
p, where h = |ClM| (the class number of M). Then ph

P = uPα(P)
e(p)
P

with uP ∈ O×
M,P for the absolute ramification index e(p) of p (which is the absolute

ramification index of P also). Regarding κI as a character of M×
A(∞)/M

× by class

field theory, we have κI(α(P)) = 1 = κI(α(P)l) with the l-component α(P)l ∈ M×
l

for any prime l outside p, because κI(O
×
l ) = 1 and α(P) ∈M×. Then we have

κI(p
h
P) = κI(p

h
Pα(P)−e(p)) = κI(uP)

∏

P′|p,P′ 6=P

κI(α(P)
−e(p)
P′ ),
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where α(P)P′ is the P′-component of α(P) ∈M× ⊂M×
A . By (1.2), we get

κI(p
h
P) = (1 +Xp)

logp(Np(α(P)−e(p)cu−1
p ))

logp(γp)
∏

P′∈Σc
p−{P}

(1 +Xp′)

e(p) logp(Np′ (α(P)1−c
P′ ))

logp(γ
p′ ) ,

where p′ = P′ ∩ O. Here logp is the Iwasawa p-adic logarithm defined over Q×
p

characterized by logp(p) = 0. In particular, we have

logp(Np(uP)) = log(Np(p
h
Pα(P)

−e(p)
P )) = −e(p) logp(Np(α(P)P)).

Thus we have

Lemma 1.5. Let the notation be as above. Then we have, for primes P′ ∈ Σp and
p′ = P′ ∩O,

∂κ(pP)

∂Xp′
=
e(p) logp(Np′(α(P)

(1−c)
P′ ))

h logp(γp′)
κ(pp)(1 +Xp′)

−1.

We have a(pp) = cpκ(pp) for a nonzero constant cp ∈ W×, because the nearly
ordinary character of IndF

M ϕ̃ is κ times a character of DP with values in W×. We
do not need to pay much attention to the constant cp, because the formula of the
L-invariant only involve

(
∏

p|p

a(pp)
−1δp([γp, Fp])) det

((
∂a(pp)

∂Xp′

)

p,p′

)

in which the constant cp cancels out. Specializing the above formula to the locally
cyclotomic point P , we get

Theorem 1.6. Let the notation and the assumption be as above and as in Theo-
rem 1.3, including (at1–4). Then we have, for any specialization ϕ̃P of ϕ̃ modulo a
locally cyclotomic point P ∈ Spf(I)(W ),

L(Ad(IndF
M ϕ̃P )) = det

((
logp(Np′(α(P)

(1−c)
P′ ))

)
P,P′∈Σc

p

)∏

p|p

e(p)

h
,

where p = O ∩P and p′ = O ∩P′

By Lemma 1.2 (2) and Theorem 1.3, we see

L(Ad(IndF
M ϕ̃P )) = L(αM/F ),

and this is the reason for the independence of L(Ad(IndF
M ϕ̃P )) on the choice of

the locally cyclotomic points P . If F = Q, we have α(P)α(P)c = ph and hence
logp(α(P)) = − logp(α(P)c). Thus logp(α(P)1−c) = 2 logp(α(P)), and therefore the
above formula coincides with the classical analytic L-invariant formula for αM/F of
Ferrero–Greenberg.
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For a given ordinary CM type (M,Σp), we can choose ψ satisfying the assumptions
of Theorems 1.3 and 1.6. Then through the above process, we can compute L(αM/F )
as follows:

Corollary 1.7. Suppose that M/F is an ordinary CM-quadratic extension of M sat-
isfying (spt). Choose a p-ordinary CM-type Σ of M . Then the L-invariant L(αM/F )

of Greenberg for the quadratic Galois character αM/F =
(

M/F
·

)
is given by

det

((
logp(Np′(α(P)

(1−c)
P′ ))

)
P,P′∈Σc

p

)∏

p|p

e(p)

h
,

where h is the class number of M , p′ = P′ ∩ O and α(P) is a generator of P ∈ Σc
p.

If the prime p does not split in F/Q, the L-invariant of αM/F does not vanish.

A regulator similar to the above determinant was introduced long ago in [FeG]
(3.8) in the context of (classical) cyclotomic Iwasawa’s theory.

2. Appendix:Differential and adjoint square Selmer group

2.1. Adjoint square Selmer groups and differentials. Recall the universal
nearly ordinary deformation ρ : Gal(Q/F )→ GL2(R) over K with the pro-Artinian
local universal K-algebra R. This means that for any Artinian local K-algebra A
with maximal ideal mA and any Galois representation ρA : Gal(Q/F ) → GL2(A)
such that

(K1) unramified outside p;
(K2) ρA|Gal(Qp/Fp)

∼= (
∗ ∗
0 αA,p ) with αA,p ≡ αp mod mA;

(K3) det(ρA) = det ρ;
(K4) ρA ≡ ρ mod mA,

there exists a unique K-algebra homomorphism ϕ : R→ A such that ϕ◦ρ ∼= ρA. We
write ΦK(A) the collection of the isomorphism classes of the deformations ρA.

Let ρ = (ρ mod mW ), and consider a similar deformation changing base ring from
K to W . Then we have a universal couple (R, %) as long as (aiF ) ρ is absolutely
irreducible and (ds) ρss is not scalar-values over Dp for all p|p (these assumptions
we always assume). This means that for any pro-Artinian local W -algebra A with
A/mA = W/mW = F for the maximal ideal mA and any Galois representation ρA :
Gal(Q/F )→ GL2(A) such that

(W1) unramified outside p;
(W2) ρA|Gal(Qp/Fp)

∼= ( ∗ ∗
0 αA,p ) with αA,p ≡ αp mod mA;

(W3) det(ρA) = det ρ;
(W4) ρA ≡ ρ mod mA,
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there exists a unique W -algebra homomorphism ϕ : R → A such that ϕ ◦ % ∼= ρA.
We write Φ(A) the collection of the isomorphism classes of this finer deformations
ρA. Thus Φ(A) ∼= HomW−alg(R,A).

Let ρ̃ ∈ Φ(A) acting on L̃. Define

(2.1) T̃ =
{
φ ∈ EndA(L̃)

∣∣Tr(φ) = 0
}
.

We let σ ∈ GF act on v ∈ T̃ by conjugation v 7→ ρ̃(σ)vρ̃(σ)−1. As before, T̃ has the
following three step filtration stable under Dp for each prime ideal p|p of F :

(2.2) T̃ ⊃ F−
p T̃ ⊃ F+

p T̃ ⊃ {0}.

Let Z∗
p = Qp/Zp = Hom(Zp.Qp/Zp) and A∗ = Hom(A,Qp/Zp). We thus have

SelF (V/T ) = SelF (T ⊗ Z∗
p) for V/T := T ⊗Zp Qp/Zp, and we also have

SelF (Ad(ρ̃)) = SelF (T̃ ⊗A A
∗) = Ker(H1(G, T̃ ⊗A A

∗)→
∏

p|p

H1(Ip,
T̃ ⊗A A

∗

F+
p T̃ ⊗A A∗

))

for ρ̃ ∈ Φ(A) and the inertia subgroup Ip ⊂ G. Note that Dp acts trivially on
F−

p V/F+
p V . We often indicate this fact by writing F−

p V/F+
p V
∼= K as Dp-modules.

Proposition 2.1. Suppose that Φ has a universal couple (RF , %F ). Then the Pon-
tryagin dual Sel∗F (V/T ) is canonically isomorphic to the module of 1-differentials
ΩRF /W [[ΓF ]] ⊗RF ,ϕ W , where ϕ : RF → W is the W -algebra homomorphism such

that ρ ∼= ϕ ◦ %F . More generally, for any T̃ ∈ Φ(A), we have

Sel∗F (T̃ ⊗A A
∗) = Hom(SelF (T̃ ⊗A A

∗),Z∗
p)
∼= ΩRF /W [[ΓF ]] ⊗RF ,φ A,

where φ : RF → A is the W -algebra homomorphism such that ρ̃ ∼= φ ◦ %F .

This proposition is from [MFG] Theorem 5.14. Here Kähler 1-differentials are
supposed to be continuous with respect to the profinite topology.

Here is a sketch of a proof: Write simply (R, %) for (RF , %F ). Let Φ = Φn.ord,ν;
so, Φ(A) ∼= HomW -alg(R, A). For simplicity, we assume that X be a profinite R-
module, (in general, we take an inductive limit of such modules). Then R[X] is an
object in CLW . We consider the W -algebra homomorphism ξ : R → R[X] with ξ
mod X = id. Then we can write ξ(r) = r ⊕ dξ(r) with dξ(r) ∈ X. By the above
definition of the product, we get dξ(rr

′) = rdξ(r
′) + r′dξ(r) and dξ(W ) = 0. Thus dξ

is a W -derivation, i.e., dξ ∈ DerW (R,X). For any derivation d : R → X over W ,
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r 7→ r ⊕ d(r) is obviously a W -algebra homomorphism, and we get

(2.3)
{
ρ̃ ∈ Φ(R[X])

∣∣ρ̃ mod X = %
}
/ ≈X

∼=
{
ρ̃ ∈ Φ(R[X])

∣∣ρ̃ mod X ≈ %
}
/ ≈

∼=
{
ξ ∈ HomW -alg(R,R[X])

∣∣ξ mod X = id
}

∼= DerW (R,X) ∼= HomR(ΩR/W ,X),

where “≈X” is conjugation under (1⊕Mn(X))∩GL2(R[X]), and “≈” is conjugation
by elements in GL2(R[X]).

Let ρ̃ be the deformation in the left-hand side of (2.3). Then we may write ρ̃(σ) =
%(σ)⊕ u′(σ) (here u′(σ) is a “derivative” of ρ̃(σ)). We see

%(στ )⊕ u′(στ ) = (%(σ)⊕ u′(σ))(%(τ )⊕ u′(τ )) = %(στ )⊕ (%(σ)u′(τ ) + u′(σ)%(τ )).

Define u(σ) = u′(σ)%(σ)−1, which is a cocycle with values on M2(X) by the above
formula. Since det ρ̃ = det ρ = det %, x(σ) = ρ̃(σ)%(σ)−1 has values in SL2(R[X]), u
has values in Ad(X) = L(Ad(%)) ⊗R X. Hence u : GS

F → Ad(X) is a 1-cocycle. It is
a straightforward computation to see the injectivity of the map:

{
ρ̃ ∈ Φ(R[X])

∣∣ρ̃ mod X ≈ %
}
/ ≈X↪→ H1(GS

F , Ad(X))

given by ρ̃ 7→ [u]. We put F±
p (Ad(X)) = F±

p L(Ad(%)) ⊗R X. Since %|Ip is upper-
triangular (up to conjugation), we have u|Ip has values in F−

p Ad(X).
If further we insist on dξ(W [[ΓF ]]) = 0, since W [[ΓF ]]-algebra structure is given by

δpα
−1
p which is the character of lower right corner of % (restricted to Ip) this means

the corresponding cocycle u|Ip has values in {( ∗ ∗
0 0 )}. Since Tr(u) = 0, we conclude

u|Ip ∈ F+
p Ad(X). If L̃ is finite, we may tale X = L̃, and this gives the desired

isomorphism, because T̃ ⊗A A
∗ = Ad(L̃). If L̃ is not finite, then L̃ ⊗A A

∗ can be
written as a union of Ad(X) for finite X, and by taking the inductive limit, we get
the assertion.. �

If we replace F+?̃ in the definition of the Selmer group by F−?̃, we get the “minus”
Selmer group Sel−F (?), and by the same argument

Sel−F (T̃ ⊗A A
∗)∗ ∼= ΩRF /W ⊗R A.

We can apply the above argument to (R,ρ). If ρ ∈ Φ(W ), we have a unique
P ∈ Spf(RF )(W ) such that % mod P = ρ. Then R is canonically isomorphic to the

P -adic completion-localization R̂P of R at P and ρ : GF
%−→ GL2(R)→ GL2(R̂P ) =

GL2(R). Thus we get

Corollary 2.2. We have ΩR/K⊗R,ϕρK
∼= Sel−F (V ) which is isomorphic to

⊕
p|pKdXp

under the conjecture: R ∼= K[[Xp]].
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Under the conjecture, the Selmer group Sel−F (V ) is exactly H ⊂ H1(G, V ) discussed
in the second lecture, and the restriction map takes H = Sel−F (V ) into SelF∞(V ) as

we have seen. Recall Greenberg’s formula for a base ap of H
Res∼= H:

L(Ad(ρ)) = det
(
(ap([p, Fp′])p,p′|p

(
logp(γp)

−1ap([γp′, Fp′]))p,p′|p
)−1
)
.

Then by the above corollary, putting cp = ∂ρ
∂Xp

ρ−1
∣∣∣
X=0

, {cp}p|p is a basis of H. Then

writing cp ∼
( −ap ∗

0 ap

)
, we can compute the above formula. Note that ap = δ−1

p
∂ρ
∂δp

∣∣∣
X=0

,

and δp([γp, Fp]) = (1 + Xp) and δp([pp, Fp]) = U(pp). From this we get the formula
we stated in the first lecture.

We add the following condition to the deformations L̃ satisfying (W1–4) to make
the universal ring small enough to prove SelF (V/T ) is finite (and SelF (V ) = 0). Let
Σp be the set of all prime factors of p in O. Fix a pair of integers (κ1,p, κ2,p) for each
p ∈ Σp, and write κ for the tuple (κ1,p, κ2,p)p. We assume that [κ] = κ1,p + κ2,p is
independent of p ∈ Σp. As an extra condition, we now consider

(W5) On T̃ /F+
p T̃ , Gal(F ur

p [µp∞]/F ur
p ) acts by the character N κ1,p for all p|p, and

det(T̃ ) = N [κ] on an open subgroup of Ip.

We write Φκ(A) for the set of isomorphism classes of deformations ρ̃ : GF → GL2(A)
of ρ satisfying (W1–5). Under (aiF ) or (ds), we have the universal couple (Rκ,F , %κ,F )
among the deformations satisfying (W1–5). We call c ∈ GF a complex conjugation,
if c is in the conjugacy class of a complex conjugation in Gal(Q/Q).

Conjecture 2.3. Suppose (ds) and (aiF ) for ρ and that F is totally real. If det(ρ)(c) =
−1 for any complex conjugation c, the universal ring Rκ,F is free of finite rank over
W , and Rκ,F is a reduced local complete intersection if κ2,p − κ1,p ≥ 1 for all p ∈ Σp.

Here a reduced algebra A free of finite rank over W [[x1, . . . , xt]] is a local complete
intersection over R = W [[x1, . . . , xt]] if A ∼= R[[T1, . . . , Tr]]/(f1(T ), . . . , fr(T )) for r
power series fi(T ), where r is the number of variables in R[[T1, . . . , Tr]]. Though the
assertion of Rκ,F being a local complete intersection is technical, as we will see later,
this claim is a key to relating the size of the Selmer group with the corresponding L-
value. In the classical setting of Galois representations associated to elliptic modular
forms of weight k (in Sk(Γ1(N))), we have κ = (0, k − 1). Thus the condition κ2,p −
κ1,p ≥ 1 is equivalent to requiring k ≥ 2.

Theorem 2.4 (Wiles, Taylor, Fujiwara). Suppose that the initial representation ρ is
associated to a Hilbert modular form of p-power level (in this case, we call ρ modular).
If (aiM ) holds for M = F [µp], Conjecture 2.3 holds.

See Fujiwara’s paper: arXiv.math.NT/0602606. A more general version of this
theorem is proven as Theorem 3.67 and Corollary 3.42 in [HMI].
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Proposition 2.5. Assume Conjecture 2.3. Then

(1) SelF (Ad(ρ̃) ⊗W W ∗) is finite for any ρ̃ ∈ Φk(W ) and R ∼= K[[Xp]]p∈Σp if
κ2,p − κ1,p ≥ 1 for all p ∈ Σp,

(2) RF is a reduced local complete intersection free of finite rank over W [[ΓF ]],
(3) Sel∗F (Ad(%F )⊗RF

R∗
F ) is a torsion RF -module,

(4) For an irreducible component Spf(I) of Spf(RF ), write ρI = π ◦ %F for the
projection π : RF � I. Then Sel∗F (Ad(ρI)⊗I I∗) is a torsion I-module.

Proof. If R is reduced and free of finite rank over W , ΩR/W is a finite module. Thus
the first assertion follows. Note that Pκ = Ker(κ : W [[ΓF ]] → W ) is generated
by ((1 + xp) − N (γp)

κ1,p) for p ∈ S. Thus ∩κPκ = {0}. Since RF /PκRF
∼= Rκ,F

which is free of finite rank s over W , by Nakayama’s lemma, RF is generated by s
elements r1, . . . , rs over W [[ΓF ]] which give a basis of Rκ,F over W . Thus we have
a surjective W [[ΓF ]]-linear map ι : W [[ΓF ]]s → RF sending (a1, . . . , as) to

∑
j ajrj.

Taking another κ′, we find that RF/Pκ′RF
∼= Rκ′ ,F which is free over W ; so, it has to

be free of rank s over W . Thus Ker(ι) ⊂ P s
κ′ for all κ′; so, ι has to be an isomorphism.

This shows the freeness in the second assertion.
Let C be the set of all κ = (κp)p such that κ2,p − κ1,p ≥ 1 for all p. Then we still

have
⋂

κ∈C Pκ = {0}. Thus the natural W -algebra homomorphism RF →
∏

κ∈C Rκ,F

is an injection. The right-hand side is reduced (i.e., no nilpotent radical), and RF is
reduced.

We write

Rκ = R/Pκ =
W [[T1, . . . , Tr]]

(f 1(T ), . . . , f r(T ))
.

Write tj ∈ mRκ for the image of Tj in Rκ. Take a lift tj in mR of tj so that tj = (tj
mod PκR). Define ϕ : W [[ΓF ]][[T1, . . . , Tr]] � RF by ϕ(f(T1, . . . , Tr)) = f(t1, . . . , tr).
Since RF is W [[ΓF ]]-free, Ker(ϕ) ⊗W [[ΓF ]],κ W = (f 1, . . . , f r); so, taking a lift fj ∈
Ker(ϕ) of f j, we find Ker(ϕ) = (f1, . . . , fr) by Nakayama’s lemma, and hence RF is
a local complete intersection over W [[ΓF ]].

Since RF is reduced and finite over W [[ΓF ]], ΩRF /W [[ΓF ]] is a torsion RF -module.
From this, the last two assertions follow. SinceRκ,F = RF/PκRF is reduced, Spf(RF )

is étale over Spf(W [[ΓF ]]) around ρ = P ; so, R = R̂P
∼= K[[Xp]]. This finishes the

proof. �
Since RF is reduced and free of finite rank over W [[ΓF ]], its total quotient ring

Q is a product of fields of finite dimension over the field K of fractions of W [[ΓF ]].
For simplicity, we assume that I = W [[ΓF ]]. In particular, writing K for the field
of fractions of I, we have Q = K ⊕ X for a complementary ring direct summand
X. Let I′ be the projection of RF to X. Then Spf(RF ) = Spf(I) ∪ Spf(I′) (and
Spf(I′) is the union of irreducible components other than Spf(I)). We take the
intersection Spf(C0) = Spf(I) ∩ Spf(I′); so, C0 = I ⊗RF

I′, which is a torsion I-
module called the congruence module of I (or of Spf(I)). It is easy to see that
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I ⊗RF
I′ ∼= I/ ((K⊕ 0) ∩ RF ) (cf. [H88] 6.3). By the above expression, the W [[ΓF ]]-

freeness tells us that charI(C0) = (K⊕ 0) ∩RF is an intersection of a power of prime
divisors (cf. [BCM] 7.4.2). Since I = W [[ΓF ]] is regular, and hence char(C0) is a
principal ideal generated by h ∈ I. For this conclusion, we do not need the isomor-
phism I ∼= W [[ΓF ]] = W [[xp]]p but a milder condition that I is a Gorenstein ring
over W [[ΓF ]] is enough (that is, HomW [[ΓF ]](I,W [[ΓF ]]) ∼= I as I-modules; see [H88]
Theorem 6.8). Note that a local complete intersection over W [[ΓF ]] is a Gorenstein
ring (e.g., [CRT] Theorem 21.3). Now by a theorem of Tate (e.g., [MFG] 5.3.4),

char(ΩRF /W [[ΓF ]] ⊗RF
I) = char(C0) = (h).

We have for any prime ideal P ∈ Spf(I) with ι : I/P ∼= W , writing ρP = ι ◦ ρI :
GF → GL2(W )

Sel∗F (Ad(ρP )⊗W W ∗) ∼= ΩRF /W [[ΓF ]] ⊗RF ,P W ∼= Sel∗F (Ad(ρI)⊗I I∗)⊗I I/P.

This shows that if char(Sel∗F (Ad(ρI)⊗I I∗)) = (h) for h ∈ I, we have

char(Sel∗F (Ad(ρP )⊗W W ∗)) = (h(P )),

where h(P ) = (h mod P ) ∈ W . Thus we get

Corollary 2.6. We have |Sel∗F (Ad(ρP )⊗WW
∗)| = |h(P )|−[K:Qp]

p for all P ∈ Spf(I)(W ).

In this corollary, we do not preclude the case where Sel∗F (Ad(ρP )⊗W W ∗) is infinite.

In such an extreme case, simply h(P ) = 0 and, hence, |h(P )|−[K:Qp]
p =∞.

References

Books

[ACM] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions,
Princeton University Press, Princeton, NJ, 1998.
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