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Theorem

These are slides for the talk which was a sequel

to the earlier talk (this one was given only at

Harvard).

Let us recall the theorem whose proof we want

to talk about.

Main Theorem: (joint work with Wintenberger)

(i) For p > 2 Serre’s conjecture is true for odd

conductors, i.e., for ρ unramified at 2.

(ii) For p > 2 Serre’s conjecture is true when

k(ρ) = 2.

Last time I skteched the ideas of the proof of

the theorem in the level 1 case.
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Killing ramification

We start by presenting a corollary of the level 1

case which introduces a key trick in the proof

of the above theorem, that of “killing ramifi-

cation”.

Corollary:

If ρ : GQ → GL2(Fp) is of S-type with k(ρ) = 2,

N(ρ) = q, with q prime, and p, q > 2, then it

arises from S2(Γ1(q)).



Proof of corollary

We consider a minimal lift of ρ to a ρ unram-

ified outside p, q, Barostti-Tate at p and mini-

mally ramified at q. Then ρ is part of a com-

patible system (ρλ). Consider ρq and ρq: the

latter is a level 1 representation, and modular-

ity lifting theorems apply to prove that ρq is

modular, hence ρp, hence ρ.



General strategy

The proof of our theorem is a combination of

the weight reduction technique that occured in

the proof of the level one case, and the idea

above about “killing ramification”.

One of the technical difficulties is that modu-

larity lifting theorems are trickier when ρ|Q(µp)
is reducible, and at present the only theorems

available in this case are those of Skinner-Wiles.

These apply when the lift is ordinary. Thus

we have to ensure either that the modularity

lifting theorems we need to invoke are in non-

degenerate cases, or when the lifts considered

are ordinary. Having done the level one case,

it is possible to ensure the former.

The idea to do this is to rigidify the residual

representations that arise by introducing rami-

fication of “dihedral” type at a prime. Given a



ρ, the residual representations that arise in the

proof of the modularity of ρ, using the tech-

niques of:

(i) “weight reduction” and

(ii) “killing ramification”

are in characteristic at most that of ρ and the

primes at which ρ ramifies. This motivates the

following definition.



Locally good dihedral

representations

Define the function Q : N → N such that Q(1) =

1, and for n ≥ 2, Q(n) is the largest prime that

divides n.

Definition: Let ρ : GQ → GL2(Fp) be a con-

tinuous representation.

We say that q 6= p is a good dihedral prime for

ρ if

(i) ρ|Iq is of the form

(
ψ 0
0 ψq

)
,

where ψ is a non-trivial character of Iq of order

a power of an odd prime t 6= q, such that t

divides q+ 1, and t > max(Q(N(ρ)
q2

),5, p);



(ii) q is 1 mod 8, and 1 mod r for every prime

r 6= q such that r ≤ max(Q(N(ρ)
q2

), p).

If there exists a good dihedral prime q for ρ

we say that ρ is locally good-dihedral (for the

prime q), or q-dihedral.



Lemma: Let ρ be a locally good-dihedral rep-

resentation (for a prime q).

(i) The image of ρ is not solvable.

(ii) Let (ρλ) be any strictly compatible sys-

tem lifting of ρ. Then for any prime r ≤
max(Q(N(ρ)

q2
), p), any mod r representation ρr

that arises from (ρλ) is locally good-dihedral

(for the prime q) and hence has non-solvable

image (which is projectively not isomorphic to

A5).



Proof of lemma

Proof. It is enough to prove (i) as strict com-

patibility of (ρλ) ensures that all the ρr of (ii)

are q-dihedral. By definition ρ|Iq is of the form

(
ψ 0
0 ψq

)
,

where ψ is a character of Iq of order a power of

a prime t|q+1, and t is bigger than max(r, p,5)

where r 6= q ranges over primes that divide

N(ρ). As t does not divide q − 1, ρ|Dq is irre-

ducible, and hence so is ρ. As t > 5, we see

that the projective image cannot be A5.

We see that if the image of ρ is solvable, as

t > 5, then by Dickson’s theorem the projective

image of ρ is dihedral. Note that the primes s

different from q at which ρ is ramified are such

that q is 1 mod s (and 1 mod 8 if s = 2). Sup-

pose ρ is induced from GK with K a quadratic



extension of Q. Then K is unramified outside

the primes that are ramified in ρ. Thus the

prime q either splits in K or is ramified in K:

both possibilities lead to a contradiction. If q

splits in K, this contradicts the fact that ρ|Dq
is irreducible. If K is ramified at q we again

get a contradiction as t > 1 is odd.



Shape of the proof

Consider the following hypotheses (for integers

r ≥ 1):

(Lr) All ρ of S-type which satisfy the following

three conditions are modular: (a) ρ is locally

good-dihedral; (b) k(ρ) = 2 if p = 2; (c) N(ρ)

is odd and divisible by at most r primes.

(Wr) All ρ of S-type which satisfy the following

three conditions are modular: (a) ρ is locally

good-dihedral; (b) k(ρ) = 2; (c) N(ρ) is odd

and divisible by at most r primes.

The proof of our main theorem proceeds by ex-

hibiting relations between the (Lr)’s and (Wr)’s

(besides the obvious one that (Lr) implies (Wr)!).

Diagramatically the relations may be summarised

as:



W1 +3L1

t| qqqqqqqqqqq

qqqqqqqqqqq

W2 +3L2

. . .

Wr +3Lr

t| rrrrrrrrrrr

rrrrrrrrrrr

Wr+1 +3Lr+1

. . .



Auxiliary theorems

The following theorem is the idea of “killing

ramification”:

Theorem 1: (killing ramification in weight 2)

For a positive integer r, (Lr) implies (Wr+1).

The following theorem is the idea of “weight

reduction” used in the level 1 case:

Theorem 2: (reduction to weight 2) For a

positive integer r, (Wr) implies (Lr).



The following theorem provides a starting point
from which to apply Theorems 1 and 2.

Theorem 3: (a starting point) The hypothesis
(Wr) is true if r = 1.

The following theorem uses an analog, for Ga-
lois representations, of a result for modular
forms due to Carayol.

Theorem 4: (raising levels)

Assume the following hypothesis:

(D) All ρ of S-type which satisfy the following
three conditions are modular: (a) ρ is locally
good-dihedral; (b) the residue characteristic of
ρ is an odd prime; (c) N(ρ) is an odd integer.

Then any ρ of S-type of residue characteristic
p and of odd conductor, and with k(ρ) = 2 if
p = 2, is modular.



Auxiliary theorems −→
Main Theorem

We will explain how hypothesis (D) follows

from Theorems 1, 2 and 3. Then by Theo-

rem 4 we get our Main Theorem.

Notice that hypothesis (D) will be satisfied if

we prove (Lr) for each r ≥ 1. We do this by

induction on r.

(L1): Theorem 3 (starting point) fulfills the

hypothesis (W1) of Theorem 2 (weight reduc-

tion). Thus Theorem 2 gives that (L1) is true.

Induction step: Assume we have proved (Lr)

for r ≥ 1, and we want to prove (Lr+1). The

hypothesis (Lr) implies the hypothesis (Wr+1)

by Theorem 1 (killing ramification). This by

Theorem 2 yields (Lr+1).



Modularity lifting result

Consider ρ : GQ → GL2(F) with F a finite field

of characteristic p and 2 ≤ k(ρ) ≤ p+ 1 when

p > 2, and k(ρ) = 2 if p = 2. We assume that

ρ has non-solvable image.

A continuous representation ρ : GQ → GL2(O),

for O the ring of integers of a finite extension

of Qp, is said to be a lift of ρ if the reduction of

ρ modulo the maximal ideal of O is isomorphic

to ρ. We say that ρ is odd if det(ρ(c)) = −1 for

c a complex conjugation. If ρ is Hodge-Tate

of weights (k− 1,0) at p (for k ∈ N, k ≥ 2), we

say that ρ is of weight k.

Theorem: (ML)

Consider ρ : GQ → GL2(F) with F a finite field

of characteristic p and 2 ≤ k(ρ) ≤ p+ 1 when



p > 2, and k(ρ) = 2 if p = 2. We assume that

ρ has non-solvable image.

1. (p = 2) Let ρ be an odd, irreducible lift of

ρ to a 2-adic representation that is unramified

outside a finite set of primes and is Barsotti-

Tate at 2.

Then ρ is modular.

2. (p > 2) Let ρ be an irreducible lift of ρ

to a p-adic representation that is unramified

outside a finite set of primes and is either (i)

crystalline of weight k at p with 2 ≤ k ≤ p+ 1,

or (ii) potentially semistable at p of weight 2

(i.e., either up to twist semistable of weight 2,

or potentially Barsotti-Tate (BT) at p).

Then ρ is modular.



We remark that some results towards (1) are

proved by Dickinson. Part (2)(i) for weights

≤ p− 1 is proven in Diamond, Flach and Guo,

the weight p+ 1 case is proved by Kisin. Part

(2) (ii) is proved by Kisin and is the hardest of

all. The remaining parts we do.



Chebyshev estimates on

primes

In the proof of Theorem 2 (“weight reduc-

tion”) we need that for each prime p ≥ 5, there

is a prime P > p (for instance the next prime

after p) and either

(i) an odd prime power divisor `r||(P − 1) so

that
P

p
≤ 2m+ 1

m+ 1
− (

m

m+ 1
)(

1

p
) (1)

where we have set `r = 2m+ 1 with m ≥ 1, or

(ii) 2r||(P − 1) (with r ≥ 4) so that

P

p
≤ 2r

2r−1 + 2
− (

2r−1 − 2

2r−1 + 2
)(

1

p
). (2)



Proof of Theorem 1

(killing ramification in

weight 2)

Assume (Lr).

Consider ρ of S-type which is good-dihedral for

a prime q, with k(ρ) = 2, and such that N(ρ)

is odd and at most divisible by r + 1 primes.

Choose a prime s 6= q that divides N(ρ).

Choose a minimal lifting ρ, fit it in a com-

patible lift (ρλ) and consider ρs. Then ρs is a

S-type representation, is q-dihedral and hence

has non-solvable image the lemma, and N(ρs)

is divisible by at most r primes: the prime di-

visors of N(ρs) are a subset of the set of the

prime divisors of the prime-to-s part of N(ρ).

Thus by (Lr) we know ρs is modular, and then

by Theorem ML we are done.



Proof of Theorem 2

(weight reduction)

Assume (Wr). Then we have to prove that

any ρ of S-type which is good-dihedral (for a

prime q), such that p is odd, N(ρ) is odd, and

divisible by at most r primes, is modular.

This is very similar to the proof of the level 1

case and again we do this by induction on the

prime p.

The case of p = 2 is part of the assumption

(Wr) (as for p = 2 we only consider weight 2

representations). We only explain the passage

from p = 2 to p = 3 as there is a slight twist

here.

Mod 3: Consider ρ of S-type which is good-

dihedral (for a prime q), k(ρ) ≤ 4 in residue



characteristic 3, N(ρ) is odd, and at most di-
visible by r primes. Choose a weight 2 lift-
ing and fit it in a compatible system (ρλ) and
consider ρ2. The residual representation ρ2 is
q-dihedral and hence has non-solvable image,
k(ρ2) = 2 and N(ρ2) is divisible by at most at
r + 1 primes. If ρ2 is unramified at 3, N(ρ2)
is divisible by at most r primes, and then ρ2
is modular by (Wr). Theorem ML yields that
(ρλ) is modular and hence ρ is modular in this
case.

Otherwise, note that ρ2|I3 is unipotent, and
thus ρ2|D3

(up to unramified twist) is of the
form (

χ2 ∗
0 1

)
.

We lift ρ2 to ρ′2 whih is minimally ramified out-
side 3 but at I3 is of the form(

ω2
3,2 ∗
0 ω6

3,2

)
.



Here ω3,2 is a character of I3 which factors

through its F∗9-quotient (ω2
3,2 and ω6

3,2 are all

the characters of order 4 of F∗9) . Fit ρ′2 in

an odd compatible system (ρ′λ). Consider ρ′3
and the residual representation ρ′3 which is q-

dihedral and hence has non-solvable image. By

a result of Savitt a twist of ρ′3 has weight 2,

and N(ρ′3) is odd and divisible by at most r

primes. Thus ρ′3 is modular by (Wr), and we

are done by applying Theorem ML.



Proof of Theorem 3 (a

starting point)

This follows from the corollary we started out

with as we explain below.

Let us prove:

1. If ρ is an irreducible, odd, 2-dimensional,

mod p representation of GQ with k(ρ) = 2,

N(ρ) = q, with q an odd prime, then it arises

from S2(Γ1(q)).

2. If ρ is an irreducible, odd, 2-dimensional,

mod p representation of GQ with k(ρ) = 2,

unramified outside p and another odd prime q,

tamely ramified at q, such that the order of

ρ(Iq) is the power of an odd prime t > 5, then

ρ arises from S2(Γ1(q
2)).



Proof. The first statement is exactly the corol-

lary we started with (at least for p > 2).

We reduce the second statement to the first.

We may assume that t 6= p, as otherwise this

is covered by the first statement. Also as ρ

is tamely ramified at q, we deduce that t 6= q.

(We may also assume that im(ρ) is not solvable

as otherwise we are done.)

Construct a minimal compatible system lift (ρλ)

of ρ. Thus ρp unramified outside {p, q}, is

Barsotti-Tate at p, |ρp(Iq)| = |ρp(Iq)|.

If the reduction ρt of an integral model of ρt
is reducible, or unramified at q (which implies

reducibility by the proof of the level 1 weight 2

case of Serre’s conjecture), then we are done

by applying the modularity lifting theorems of

Skinner-Wiles, which allow us to conclude that



ρt is modular, hence (ρλ) is modular and hence

so is ρ.

If ρt is irreducible and ramified at q, then part

(i) implies that the representation is modular

(as in fact the ramification will be unipotent

at q), and then by modularity lifting results of

Wiles and Taylor, we again conclude that ρt is

modular, hence (ρλ) is modular and hence so

is ρ. (The lifting theorems apply as one easily

checks that ρt|Q(µt) is irreducible.)



Proof of Theorem 4

(level raising)

Consider ρ : GQ → GL2(F) of S-type, F a finite

field of characteristic p, with k(ρ) = 2 if p = 2,

and of odd conductor.

Let S be the primes other than p at which ρ

is ramified. We may assume that ρ has non-

solvable image.

Construct a minimal compatible system (ρλ)

that lifts ρ. If there is a p′ /∈ S ∪ {p} and p′ > 5

at which the mod p′ representation ρp′ has solv-

able image we are done using the modularity

lifting theorems in Skinner-Wiles and Taylor-

Wiles. Note that for p′ /∈ S ∪ {p}, p′ > 5,

ρp′ cannot be irreducible and induced from the

quadratic subfield of Q(µp′) (as k(ρp′) = 2 and

p′ > 5).



Thus we may choose p′ > 5 that is congruent

to 1 modulo 4, with p′ larger than all the primes

in S ∪ {p}, and such that ρp′ : GQ → GL2(F′)
has non-solvable image with F′ a finite field of

characteristic p′.



We have the following general easy lemma:

Lemma:

Let p be a prime that is congruent to 1 modulo

4, and ρ : GQ → GL2(F) a representation of S-

type, with F a finite field of characteristic p.

Assume that im(ρ) is not solvable. Denote by

ρproj the projectivisation of ρ, and c ∈ GQ a

complex conjugation. There is a set of primes

{q} of positive density that are unramified in ρ

such that:

(i) ρproj(Frobq) is the conjugacy class of ρproj(c),

(i) q is congruent to 1 modulo all primes ≤ p−1

and is 1 modulo 8,

(iii) q is −1 mod p.



Proof. By Dickson’s theorem, and as ρ has

non-solvable image, the image of ρproj is conju-

gate to either PSL2(F′′) or PGL2(F′′) for some

subfield F′′ of F, with |F′′| ≥ 4, or is isomor-

phic to A5. When the image is conjugate to

PGL2(F′′), note that as p is congruent to 1

mod 4, ρproj(c) is inside PSL2(F′′). As PSL2(F′′)
(for |F′′| ≥ 4) and A5 are simple (and non-

cyclic), and as p is congruent to 1 modulo 4,

we may appeal to the Cebotarev density theo-

rem as follows. We choose q satisfying the fol-

lowing compatible conditions : q ≡ 1mod(8),

χ`(Frobq) = 1 for ` odd < p, χp(Frobq) = −1,

and ρproj(Frobq) conjugate to ρproj(c).



Proof of Theorem 4

(level raising) contd.
Apply the lemma to our ρp′, and choose a prime
q as in the lemma. Next one uses lifting tech-
niques (LT) to lift ρp′ to a compatible system
(ρ′λ) such that ρp′|Iq is of the shape(

χ′ ∗
0 χ′q

)

for some χ′ a p′-adic character of Iq of level
2 (i.e., factors through the F∗

q2
but not F∗q-

quotient) and order a power of p′. Let s be
the largest prime < p′: consider ρ′s, and the
corresponding residual representation ρ′s. Note
that s > 2, ρ′s is locally good-dihedral (for the
prime q), and N(ρ′s) is odd. Thus, by hypoth-
esis (D), ρ′s is modular and has non-solvable
image. Hence by Theorem ML the compatible
system (ρ′λ) is modular. Observe that the com-
patible systems (ρλ) and (ρ′λ) are linked at ρp′.
Applying Theorem ML again we conclude that
that (ρλ) is modular, and hence ρ is modular.


