QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Tuesday, October 24, 1995 (Day 1)

1. Let K be a field of characteristic 0 .
a. Find three nonconstant polynomials $x(t), y(t), z(t) \in K[t]$ such that

$$
x^{2}+y^{2}=z^{2}
$$

b. Now let n be any integer, $n \geq 3$. Show that there do not exist three nonconstant polynomials $x(t), y(t), z(t) \in K[t]$ such that

$$
x^{n}+y^{n}=z^{n} \text {. }
$$

2. For any integers k and n with $1 \leq k \leq n$, let

$$
S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right): x_{1}^{2}+\ldots+x_{n+1}^{2}=1\right\} \subset \mathbb{R}^{n+1}
$$

be the n-sphere, and let $D_{k} \subset \mathbb{R}^{n+1}$ be the closed disc

$$
D_{k}=\left\{\left(x_{1}, \ldots, x_{n+1}\right): x_{1}^{2}+\ldots+x_{k}^{2} \leq 1 ; x_{k+1}=\ldots=x_{n+1}=0\right\} \subset \mathbb{R}^{n+1} .
$$

Let $X_{k, n}=S^{n} \cup D_{k}$ be their union. Calculate the cohomology ring $H^{*}\left(X_{k, n}, \mathbb{Z}\right)$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be any \mathcal{C}^{∞} map such that

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \equiv 0
$$

Show that if f is not surjective then it is constant.
4. Let G be a finite group, and let $\sigma, \tau \in G$ be two elements selected at random from G (with the uniform distribution). In terms of the order of G and the number of conjugacy classes of G, what is the probability that σ and τ commute? What is the probability if G is the symmetric group S_{5} on 5 letters?
5. Let $\Omega \subset \mathbb{C}$ be the region given by

$$
\Omega=\{z:|z-1|<1 \quad \text { and } \quad|z-i|<1\} .
$$

Find a conformal map $f: \Omega \rightarrow \Delta$ of Ω onto the unit disc $\Delta=\{z:|z|<1\}$.

6. Find the degree and the Galois group of the splitting fields over \mathbb{Q} of the following polynomials:
a. $x^{6}-2$
b. $x^{6}+3$

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday, October 25, 1995 (Day 2)

1. Find the ring A of integers in the real quadratic number field $K=\mathbb{Q}(\sqrt{5})$. What is the structure of the group of units in A ? For which prime numbers $p \in \mathbb{Z}$ is the ideal $p A \subset A$ prime?
2. Let $U \subset \mathbb{R}^{2}$ be an open set.
a. Define a Riemannian metric on U.
b. In terms of your definition, define the distance between two points $p, q \in U$.
c. Let $\Delta=\left\{(x, y): x^{2}+y^{2}<1\right\}$ be the open unit disc in \mathbb{R}^{2}, and consider the metric on Δ given by

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

Show that Δ is complete with respect to this metric.
3. Let K be a field of characteristic 0 . Let \mathbb{P}^{N} be the projective space of homogeneous polynomials $F(X, Y, Z)$ of degree d modulo scalars $(N=d(d+3) / 2)$. Let U be the subset of \mathbb{P}^{N} of polynomials F whose zero loci are smooth plane curves $C \subset \mathbb{P}^{2}$ of degree d, and let $V \subset \mathbb{P}^{N}$ be the complement of U in \mathbb{P}^{N}.
a. Show that V is a closed subvariety of \mathbb{P}^{N}.
b. Show that $V \subset \mathbb{P}^{N}$ is a hypersurface.
c. Find the degree of V in case $d=2$.
d. Find the degree of V for general d.
4. Let $\mathbb{P}_{\mathbb{R}}^{n}$ be real projective n-space.
a. Calculate the cohomology ring $H^{*}\left(\mathbb{P}_{\mathbb{R}}^{n}, \mathbb{Z} / 2 \mathbb{Z}\right)$.
b. Show that for $m>n$ there does not exist an antipodal map $f: S^{m} \rightarrow S^{n}$, that is, a continuous map carrying antipodal points to antipodal points.
5. Let V be any continuous nonnegative function on \mathbb{R}, and let $H: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by

$$
H(f)=\frac{-1}{2} \frac{d^{2} f}{d x^{2}}+V \cdot f
$$

a. Show that the eigenvalues of H are all nonnegative.
b. Suppose now that $V(x)=\frac{1}{2} x^{2}$ and f is an eigenfunction for H. Show that the Fourier transform

$$
\hat{f}(y)=\int_{-\infty}^{\infty} e^{-i x y} f(x) d x
$$

is also an eigenfunction for H.
6. Find the Laurent expansion of the function

$$
f(z)=\frac{1}{z(z+1)}
$$

valid in the annulus $1<|z-1|<2$.

QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Thursday, October 26, 1995 (Day 3)

1. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

2. Let p be an odd prime, and let V be a vector space of dimension n over the field \mathbb{F}_{p} with p elements.
a. Give the definition of a nondegenerate quadratic form $Q: V \rightarrow \mathbb{F}_{p}$
b. Show that for any such form Q there is an $\epsilon \in \mathbb{F}_{p}$ and a linear isomorphism

$$
\begin{aligned}
\phi: V & \longrightarrow \mathbb{F}_{p}^{n} \\
v & \longmapsto\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

such that Q is given by the formula

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n-1}^{2}+\epsilon x_{n}^{2}
$$

c. In what sense is ϵ determined by Q ?
3. Let G be a finite group. Define the group ring $R=\mathbb{C}[G]$ of G. What is the center of R ? How does this relate to the number of irreducible representations of G ? Explain.
4. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be any isometry, that is, a map such that the euclidean distance between any two points $x, y \in \mathbb{R}^{n}$ is equal to the distance between their images $\phi(x), \phi(y)$. Show that ϕ is affine linear, that is, there exists a vector $b \in \mathbb{R}^{n}$ and an orthogonal matrix $A \in O(n)$ such that for all $x \in \mathbb{R}^{n}$,

$$
\phi(x)=A x+b .
$$

5. Let G be a finite group, $H \subset G$ a proper subgroup. Show that the union of the conjugates of H in G is not all of G, that is,

$$
G \neq \bigcup_{g \in G} g H g^{-1}
$$

Give a counterexample to this assertion with G a compact Lie group.
6. Show that the sphere $S^{2 n}$ is not the underlying topological space of any Lie group.

