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R E A L F U N C T I O N S O F S E V E R A L R E A L VA R I A B L E S

OR FUNCTIONS FROM AN INNER PRODUCT SPACE TO IR

Yo u r fi r s t e x p e r i e n c e s w i t h c a l c u l u s c o n c e r n e d f u n c t i o n s f r o m B ( o r

part of ]R) to IR, often called real functions of a real variable. Now we

w a n t t o c o n s i d e r , f o r e x a m p l e , r e a l f u n c t i o n s o f t w o r e a l v a r i a b l e s . S u c h

f u n c t i o n s a b o u n d i n r e a l l i f e . T h e f o r m u l a , a r e a = l e n g t h x w i d t h , f o r t h e

area of a rectangle leads to a function of one real variable if, say, the

width of the rectangle is held constant while the length varies, or if the

len>^th and width vary simultaneously in a dependent manner like J ~ /l + w^.
Bu t we may w i sh t o s t udy t he s i t ua t i on when t he l eng th and w id th va r y i ndepen

d e n t l y . T h e n w e s h a l l b e c o n c e r n e d w i t h t h e f u n c t i o n

< X , y > I — > x y

from (0,<3o) X (0,^) to B. Of course this is a very simple function, so it

is not likely that we shall learn very much about it using a general theory that

we couldn't learn more directly. But one need not go beyond polynomial functions

to find questions that would be hard to answer without using the concepts of

calculus. For example, what is the minimum value of x^ + y^ - x - 2y + xy
c o n s i d e r i n g o n l y p o s i t i v e v a l u e s o f x a n d y ?

In the study of functions of one variable, graphs provide valuable insights.

For functions of two variables graphs are again valuable. With some difficulty

we can make the graph of a function from IR^ to IR- It will be a surface
in three-dimensional space. If we are unwilling to make the three-dimensional

model, wo can visxialize it or make a perspective drawing of it on paper. The

geometric problem of finding a line tangent to a curve now becomes the problem

of finding a plane tangent to a surface. Blither of these problems is the

analytic problem of finding a first degree approximation to a function. The

geometric and analytic ways of looking at a problem often produce quite different

i m



insights, so we want to be flexible in choosing our point of view. Hence we
shall often regard a function from ]R^ to E as a function from a plane or
two-dimensional inner product space to B.

We cannot draw graphs of functions of three or more variables (because we

would need a space of dimension four, at least). Nevertheless, the geometric

point of view remains useful, so we shall often think of a function from

to E as being defined on an n-dimensional inner product space. Of course,

geometrical ideas in higher dimension are really only analogies. The ultimate

test of our ideas must remain in the domain of analysis (ie., statements about

t h e r e a l n u m b e r s ) .

8 . 1 F o u n d a t i o n s .

Although we shall not attempt to prove all the basic theorems concerning

c o n t i n u o u s f u n c t i o n s , c o n v e r g e n c e , e t c . , i t i s i m p o r t a n t t o g e t s o m e i n t u i t i v e

feeling for the ideas that underlie such notions. In this whole chapter we

shall deal with inner product spaces of finite dimension. Finite dimension

i s t h e c r u c i a l p o i n t h e r e ; w i t h b u t f e w e x c e p t i o n s e v e r y t h i n g c o u l d b e d o n e

w i t h o u t r e f e r e n c e t o a n i n n e r p r o d u c t . I t i s a l s o f o r t u n a t e t h a t a s e r v i c e a b l e

i n t u i t i o n f o r t h e c o n c e p t s c a n b e g a i n e d b y s t u d y i n g e x a m p l e s i n d i m e n s i o n s

t w o a n d t h r e e .

We begin by defining some useful properties of subsets of a space.

8.1.1 Definition. Let V be an inner product spzce, x 6 V, and p > 0,
the open ball of radius p about x is the set

{ V6 V ! II V - x|| < p).
The closed ball of radius p about x is the set

{ V 6 V t II V - X II < p }.
The tenn baU is very appropriate when V is three-dimensional, since

then the sets are what we ordinarily think of as balls. In two
the word is commonly used in place of ball. In dimension one, the set



is a segment or an interval, but one does not ordinarily describe an interval

a s h a v i n g a r a d i u s .

The difference between an open ball and a closed ball is simply that the

closed ball includes the "skin" while the open ball does not.

Note that the words open and closed have meanings that generalize their

meanings in connections with intervals. The open ball of radius p about x
in B is the open interval (x - ̂  , x + ̂  ) and the closed ball is the
closed interval [x - ̂  , x + ̂  ] . We shall extend the meaning of these words
f u r t h e r i n 8 . 1 . 3 a n d 8 . 1 . 4 .

8.1.2 Definition. Let S be any set in an inner product space V and s 6 S.

T h e n s i s c a l l e d a n i n t e r i o r p o i n t o f S a n d S i s s a i d t o b e a n e i g h b o r h o o d

o f s i f a n d o n l y i f S c o n t a i n s s o m e b a l l a b o u t s .

Examples. Suppose V is B with the usual inner product. Then || X || - |A|*
Take S to be an interval [a,b]. We already know what an interior point of
S i s ; i t i s any po in t o f (a ,b ) , tha t i s , any po in t o f S excep t an endpo in t .

Let us check that this agrees with the above definit ion. I f s 6 (a,b), take

p to be the smaller of s-a and b-s. Then every v satisfying || v-s || < yO ,
that is, every v between s-^ and s+p, lies in S, so s is an interior

point. On the other hand, a is not an interior point of 3, because no matter

how small p may be, v = a - satisfies || v-a \\ < p and v ^ S; thus
there is a point in the ball of radius p about a not in S. Similarly for

In the plane, let S be the closed unit disk, that is { v : || v || < 1 }.

The points of the unit circle are not interior points of S and al l other points

of 3 are. Say s 6 S and || s || <1. Then take ^ = 1 - || s ||. If
||v-s||<^, we have

II V II = II V - s + s II < II V - s (I + II s II < ̂  + II s II = 1,
so v € 3. Hence S contains the ball of radius p about s, so s is an
interior point of S. , On the other hand, if |( t || = 1, then t 6 S, but



t is not interior to S. For, if p is any positive niamber, then

v=( l+ ip ) t
satisfies || v-t \\ < p and v ^ S.

If S is the unit circle, or any other set we should ordinari ly describe

as a curve, then 3 has no interior points. Speaking somewhat loosely, a

po in t o f S i s in te r io r to S i f and on ly i f a l l o f i t s near ne ighbors in

V a r e a l s o i n S . T h u s S c o n t a i n s a s o l i d c h u n k o f s p a c e s u r r o u n d i n g e a c h o f

i t inter ior points. The definit ion expl ic i t ly says the chunk is to be round, but

any solid part of space can be "pared down** to be round.

The definition doesn't specify whether the ball is question is open or

c l o s e d . I t d o e s n ' t m a t t e r . I f S c o n t a i n s t h e c l o s e d b a l l a b o u t s o f r a d i u s

|0, it contains also the open ball of the same radius. If S contains the
open ball of radius p about s it contains also the closed ball of radius ̂  p

8 . 1 . 3 D e fi n i t i o n . L e t V b e a n i n n e r p r o d u c t s p a c e . A s e t S i n V i s c a l l e d

open if and only if each of its points is an interior point.

We sho\d.d check immediately that this more general meaning of the word open

is consistent with 8.1.1. Let S be an open bal l in the sense of 8.1.1. Say

3 = { V s II v-x II < p }.

Suppose y € 3; we must show that y is an interior point of 3. We know
II y-x II < p » so © = p - II y - X II > 0*
radius © about y is a subset of S. Indeed, if z is in thiie ball, that is.

if II a - y H < © » then

z-y+y-a II < II z-yj + || y-z || < 0 + II y-x II = p;
s o z € 3 .

There are lots of open sets besides open balls. Let w be a fixed non-zero

vector in V. Let H = { v t (v,w) > 0 }. H is the half-space of vectors on

one side of the hyperplane { v s (v,w) = 0 }. H is an open set. For suppose
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y € H . T h e n ( y , w ) > 0 . S o w e m a y t a k e a n d c o n s i d e r t h e b a l l

^ of radius p about y. If z is in this ball, that is, if || z-y \\ < p ,
t h e n b y t h e C a u c h y - S c h w a r z i n e q u a l i t y

^ | ( w, z - y ) | < I I w I I - 11 z - y | | < | | w | | ^ = ( w, y )
s o

(w,z) = (w,y) + (w,z-y) > (w,y) - |(w,z-y)| >0.

^ T h u s z e H . T h i s p r o v e s t h a t H c o n t a i n s a n e n t i r e b a l l a b o u t y . S i n c e y

m a y b e a n y p o i n t o f H , H i s o p e n .

I t i s w o r t h r e m a r k i n g t h a t t h e w h o l e o f V i s o p e n a n d s o i s t h e n u l l s e t .

This is another example of the fact that our definitions are intended to apply

e v e n i n a p p a r e n t l y t r i v i a l s i t u a t i o n s .

8 . 1 . ^ D e fi n i t i o n . L e t S b e a s u b s e t o f a n i n n e r p r o d u c t s p a c e V . T h e n S

is closed if and only if i ts complement ( ie., the set of al l points of V not

^ i n S ) i s o p e n .
The set { v ; || v-a || < ^ } is a closed set for any choice of a e V

and €. IR. For ^ < 0, it is empty. For ^ = 0, it contains only the
!Hi!|

single point a. For p >0, we have already called the set a closed ball;
it is left to you to check that it is indeed closed in the sense of 8,1./+.

f " * ! B e w a r e : U n l i k e a d o o r , a s e t n e e d n o t b e e i t h e r o p e n o r c l o s e d . A h a l f -

open interval on the line, say [a,b), is neither. Moreover, a set can be both

open and closed. In the present context, this is true only for the null-set and
f m n

the whole space. The concepts open set and closed set have a much wider

applicabil ity than to subsets of inner product spaces. They lie at the foundation

o f t h e s u b j e c t k n o w n a s t o p o l o g y.

T h e i d e a s o f o p e n a n d c l o s e d a r e p e r h a p s m o s t r e a d i l y u n d e r s t o o d i n t e r m s

o f t h e i d e a o f b o u n d a r y p o i n t s . T h e s e a r e t h e p o i n t s a t w h i c h a s e t a b u t s i t s

complement. Precisely, a point v is a boundary point of a set S if and only
if each ball about v contains points of both S and its complement. Here



V may or may not belong to S. A set la open if it contains none of its boundary

p o i n t s a n d c l o s e d i f i t c o n t a i n s a l l o f t h e m .

A good rule of thumb is that a set described by strong inequalities (ie.,

< or > ) is open, while one described by equalities and/or weak inequalities

( i e . , < o r > ) i s c l o s e d . T h u s , i n t h r e e - s p a c e

i s o p e n , w h i l e

i s c l o s e d .

{<x, y, z>!3p^.y < z }

{<x, y, z>i x>0 and x + y =

8.1.5 Definition. Suppose S is an open subset of an inner product space.

The set S is connected if and only if every two points of S can be joined

by a broken l ine in S, That is, g iven any two points a and b in S, there

exists a sequence x^^, x^, ..., x^ of points such that each of the segments

a 3 ( ^ , X j ^ X g , * n - l * n * * n ^ s e g m e n t u v w e m e a n
the set of points of the form Au + (1 - X )v where 0 < A < 1. )

On the line a set is connected and open if and only if it is an open

intervals In this case the broken line can always be taken straight. In

higher dimensions, the situation can be more

complicated, as indicated in the figure. If, T )
for aiy two points a and b of 3, the ( / / )
s e g m e n t a b l i e s i n S , t h e n S i s

s a i d t o b e c o n v e x .

Our formal definition of connected will be seen to agree with your intuitive

i d e a o f c o n n e c t e d s e t f o r o p e n s e t s . O u r d e fi n i t i o n d o e s n o t a p p l y t o a c i r c l e

since it is not open. A more complicated definition of connected can be given

t h a t a p p l i e s t o a r b i t r a r y s e t s . I t m a k e s a c i r c l e c o n n e c t e d a n d a l i n e l e s s

a single point disconnected as you expect.
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I n m o s t o f o u r t h e o r e t i c a l w o r k w i t h f u n c t i o n s o f s e v e r a l v a r i a b l e s w e

s h a l l c o n fi n e o u r s ^ v e s t o f u n c t i o n s d e fi n e d o n o p e n s u b s e t s o f . T h i s

i.s anilagous to considering only functions defined on open intervals in IR.

There are, of course, cases in which it is desirable to discuss functions

w h o s e d o m a i n s i n c l u d e o n e o r m o r e b o u n d a r y p o i n t s , j u s t a s i t i s o f t e n i m p o r t a n t

t o c o n s i d e r f u n c t i o n s d e fi n e d o n c l o s e d i n t e r v a l s i n B . B u t b o u n d a r y p o i n t s

c a n b e v e r y c o m p l i c a t e d i n t w o o r m o r e ■

dimensions. The figure suggests one of

the unpleasant possibilities. (The long //
thin tail of the shaded open set spirals i\\f A\\\\\/ iy )
around infinitely often approaching the VV\\ \V /
u n i t c i r c l e . E v e r y p o i n t o f t h e u n i t

circle is a bo\indary point.)

W h e n t h e b o u n d a r y i s s m o o t h , i t c a u s e s n o m o r e d i f fi c u l t y t h a n e n d p o i n t s

o n t h e l i n e , b u t i t i s h a r d t o g i v e i n a d v a n c e a r e a s o n a b l e d e fi n i t i o n o f a

s m o o th b o u n d a r y, a n d i f w e a t t e m p te d t o s t a t e o u r t h e o r e m s s o a s t o c o v e r

boundary points, we would spend an inordinate amount of energy on questions

that are clearly of secondary importance. It is best therefore to ignore

b o u n d a r y q u e s t i o n s i n o u r g e n e r a l w o r k a n d c o n s i d e r t h e m s e p a r a t e l y w h e n e v e r

t h e y a r i s e e x p l i c i t l y .

8.1.6 Definition. Let E be an open subset of an inner product space V.

a n d l e t f b e a f u n c t i o n f r o m E t o B . W e s a y t h a t f i s c o n t i n u o u s a t

V € E i f a n d o n l y i f

(V^ > 0)(9 h > Q) II v-v II < S |f(v) - f(v^)l < £.

We say that f is continuous if and only if it is continuous at each point

T h i s i s j u s t t h e o l d d e fi n i t i o n o f c o n t i n u o u s e x c e p t t h a t c l o s e i n t h e

d o m a i n i s n o w m e a s u r e d i n t e r m s o f t h e n o r m . I t s t i l l m e a n s t h a t y o u g e t

a p p r o x i m a t e l y t h e r i g h t a n s w e r i f y o u c o m p u t e w i t h a p p r o x i m a t e l y t h e r i g h t

a r g u m e n t .



Because we assume that C is open, whenever 5 is chosen small enough

||v-v̂ J < S ==» V € E. We shall always take S this small; this guarantees
t h a t f ( v ) w i l l b e d e fi n e d .

We state without proof some standard theorems concerning the continuity of

s ' o m s , p r o d u c t s , e t c . T h e p r o o f s a r e a l m o s t i d e n t i c a l w i t h t h e p r o o f s o f t h «

c o r r e s p o n d i n g t h e o r e m s f o r f u n c t i o n s o f a s i n g l e v a r i a b l e .

3 . 1 . ? T h e o r e m . L e t £ b e a n o p e n s u b s e t o f a n i n n e r p r o d u c t s p a c e , a n d l e t

f a n d g ^ t w o c o n t i n u o u s f u n c t i o n s f r o m E ^ B . L e t £ 3 R . T h e n

}\t jjLg ajid fg (defined pointwise as usual) are continuous. Provided
g does not vanish any point of E, f/g ^ continuous.

8.1.8 Theorem. Let E ]2fi an open subset of an inner product space, and let

f s E —>11 l2ft continuous. Let Cp ! B —>]R ^ continuous. Then <po f

%s con t i nuous .

E x a m p l e . I t f o l l o w s t h a t f u n c t i o n s d e fi n e d b y r a t i o n a l e x p r e s s i o n s i n t h e

coordinates are continuous provided we keep away from (ie., exclude from the

domain) points at which division by zero is called for. Thus

- 1 2
X y

d e fi n e s a c o n t i n u o u s f u n c t i o n h a v i n g d o m a i n

{ < x , y > t x + y ^ O } .
Then applying the second theorem, we see that

is also continuous with the same domain. It follows that any function that

is defined throughout an open set by a single formula involving only continuous

f u n c t i o n s i s c o n t i n u o u s . T h u s

^1 - x^ - y^
defines a continuous function on any open subset of the interior of the

unit disk (on the whole open unit disk if we like) but on no larger open set.



s i n c e t h e f o r m u l a d o e s n ' t m a k e s e n s e b e y o n d t h e c l o s e d u n i t d i s k . T h e f o r m u l a

defines a function (which is indeed continuous) on the closed unit

disk, but we are considerine; only functions with open domains.

8.1.9 l^efinition. A subset S of an inner product space is called boitnded

if and only if there is h number M such that (V s € S) ||s|| < M.

I n o t h e r w o r d s , 3 i s b o u n d e d i f a n d o n l y i f i t i s a s u b s e t o f s o m e b a l l .

It doesn't matter whether this ball is centered at the origin, as in the

d e fi n i t i o n , b e c a u s e t h e b a l l o f r a d i u s M a b o u t v i s i t s e l f a s u b s e t o f t h e

bal l o f rad ius M + Hvl l about the or ig in .

Here is a theorem that is most conveniently stated for a function having

a c l o s e d d o m a i n .

8.1.10 Theorem. Jjgt X ^ a bounded closed subset of an inner product space

and let f : X —>B ^ continuous. Then f achieves both a maxiinuM and a

m i n i m o m v a l u e .

To say that f achieves a maximum value means there is a point x 6 X

(Vxex) f(Xg)>f(x).
I t i s e s s e n t i a l t h a t X b e b o t h b o u n d e d a n d c l o s e d .

In practice the function f wi l l usually be defined on a set larger than

just X. fhe maximum and minimum values guaranteed by the theorem are only

maximum and minimum in competition with values taken by f on X.

Example. Let f(x,y) = (x + 2y)(x^ + 2y^ - 9). Then f is defined on all of
JR . Let X be the set where x^ + 2y^ <9, a closed elliptical region.

X is closed and bounded, so there must be points where f achieves a maximum

and a minimum relative to X. Since f is zero on the entire boundary of X

(ie., the ellipse x + 2y =9), while f has both positive and negative
values on X, both the maximum and the minimum values occur at interior points
of X. The theorem tells us nothing about how to find these points. Since



th® function f happens to be differentiable, however, there is an effective

method for finding them. We shall do so in section 8.2.

Consider the function g given by g(x,y) = l/xy. It is defined on all
o f excep t t he two coo rd ina te axes . Le t X be the squa re w i th ve r t i ces

at < 1., 1 >, < 1, 2 >, < 2, 2 >, and < 2, X i s a c l o s e d a n d b o x m d e d

set, so g must achieve a maximum and a minimum relative to X. These are

easily seen to occur at the vertices < 1, 1 > and < 2, 2 >, respectively.

Note that on the closed but unbounded set W where x > 1, y > 1, g does

not achieve a minimum value although its values are all positive on W. On the

bounded, but not closed set U where 0<x<l, 0<y<l, g does not
a c h i e v e a m a x i m u m v a l u e .

A f te r t heo rem 7 .1 .10 we remarked tha t t he conve rgence o f a sequence i n a

finite-dimensional inner product space V is not affected by how we choose the

inner product in V. And this is equally true for convergence in terms of other

norms on V, even norms that do not come from an inner product. A similar

statement is true concerning the concepts, we have introduced in this section.

The question of which sets are open or closed or of which points are boundary

points of a given set will not be affected by a change of norms. Similarly,
if we change the meaning of || || in definition 8.1.6 from one norm to another,

we won't affect the continuity of the function f.

However, this does not mean that f : is continuous if it is
continuous in each variable separately. Here is an example of a discontinuous

f u n c t i o n f s u c h t h a t

For each fixed b, x i—> f (x,b) is continuous B—>B.

For each fixed a, yi—> f (a,y) is continuous

(This is what we mean by saying f is continuous in each variable separately.)

f (x,y) = i f < x , y > / t < 0 , 0 >

f(0,0) = 0.



To check that f is continuous in x for a fixed value of y, say y = b 0,

r ( x .b ) =

which is continuous since the denominator is never zero. When b = 0, we have

f(x,0) = 0 for all jc; surely a continuous function. Similarly, f is
cont inuous in y fo r each fixed va lue o f x . However, f i s no t con t inuous .

It is, of course, continuous on the domain IR^ - {<0, 0>}, since it is
d e fi n e d t h e r e b y a s i n g l e e l e m e n t a r y f o r m u l a . B u t i t i s n o t c o n t i n u o u s a t t h e

or ig in . For po in ts o f the form < > wi th o< ^ 0 , f ,o ( ) = l /2 .
Since there are such points arbitrari ly near the origin, while f(0,0) = 0,

f i s n o t c o n t i n u o u s a t t h e o r i g i n . I n f a c t , f i s c o n s t a n t e x c e p t a t t h e o r i g i n

along each line through the origin. On the line y = mx, f(x,y) = m/(l + m^*),
e x c e p t f o r < x , y > = < 0 , 0 > . H e n c e i n a n y n e i g h b o r h o o d o f t h e o r i g i n , f

takes on all values between -1/2 and +1/2.

1, Prove that the intersection of any two open sets is open. Your proof should
need no modificiation if the intersection should be empty.

2 . P r o v e t h a t t h e i n t e r s e c t i o n o f a n v t w o c l o s e d j 5 A t i # ? T e + > , «

3. Prove that a plane in three-space is closed but has no interior points.

The situation is the same for a linear subspace of dimension k in an inner

product space of dimension n, if k < n.

4. Show that what you ordinarily think of as the interior of a triangular region

in the plane is indeed the set of its interior points in the sense of 8.1.2.

5. How should the definition (8.1.6) of a continuous function be modified to

e n c o m p a s s f u n c t i o n s w i t h n o n . o r t A n d o m a i n s T
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6. The example of the text of a function that is discontinuous but continuous

in each variable separately can be made even more surprising. Let

= 2 ? / ? < X , y > < 0 , 0 >

f(0,0) = 0.

S h o w t h a t t h i s f u n c t i o n i s c o n t i n u o u s a l o n a ^l ine in the plane, but is

nevertheless discontinuous at the origin. (For the latter consider points of

t h e f o r m < C X , > . )

?. Let II II ^ and || || ^ be any two norms on a finite dimensional vector
s p a c e V . T h e r e i s a t h e o r e m t o t h e e f f e c t t h a t t h e r e m u s t e x i s t a c o n s t a n t

K s u c h t h a t

(Vvev) 1|t||i < K ||v|L.
( T h i s i s n * t e a s y t o p r o v e , e v e n i f V i s t w o - d i m e n s i o n a l . T r y i t ! ) U s e t h i s

r e s u l t t o p r o v e t h a t , i f f : V B i s c o n t i n u o u s u s i n g

d e fi n i t i o n , t h e n i t i s a l s o c o n t i n u o u s u s i n g S h o w a l s o t h a t a s u b s e i

S o f V t h a t i s o p e n i n t h e s e n s e o f I t I k i s a l s o o p e n i n t h e s e n s e o f



8 , 2 P a r t i a l D i f f e r e n t i a t i o n

8.2.1 Partial derivatives. The simplest way to-apply the differential calculus

to a function of two variable is to keep one of the variables constant and

consider the function as depending on just one variable. Suppose, for

examp le ,

( 2 ) = 6x^ + x ^y + 3y^ + s i n xy.
We can fix the value of x temporarily, say x = 2, and consider instead

( 3 ) 4 8 + 4 y + 3 y ^ + s i n 2 y .
This function is differentiable and we can calculate its derivative in the

u s u a l m a n n e r a n d e r e t

4 + 6y + 2 cos 2y.

Geometrically, what we have done is to restrict the function to the line

x = 2. If we think of the graph of the original function (2), that is the

set of points < x, y, z > in IB? such that
z - f (x ,y)

which is a surface with one point above (or below) each point of the x-y

plane, then we are looking at the plane
3 3 'x = 2 i n T h i s p l a n e c u t s t h e

s u r f a c e i n a c u r v e . I f w e t h i n k o f

y and z as coordinates in th is p lane,

the curve i s the g raph o f the fxmct ion / ; \
( 3 ) . i e . . t h e s a t o f D o i n t s < v . z > I " y . « c l

z = ^ + 4y + 3y^ + sin 2y.

The derivative (4) tells us about

t h e s l o p e s o f t h e l i n e s t a n e r e n t t o t h e

Plane section of graph
( n o t t h e f u n c t i o n o f t h e t a x t ^

curve in the plane and we can use this information as usual. For example,
slnee (it) is positive for y > 0, we know that f increases along the line
X = 2 in the direction of increasing y. In fact, since W is zero for

just one value of y, say y_, is positive for y > y . and is nesatlva



t

for y < y ,̂ we know that, along the line x ̂  2, f has a minimuin value
at y ;̂ etc. (It is easy to see that - tr/if < y^ < -2/30

We could similarly analyze f along the line x = 1 by fixing x = 1;

or along any other line of the form x = a. When we fix x = a, f becomes
o 2 2

Sa-^ + a y + 3y + sin ay

a n d t h e d e r i v a t i v e i s g i v e n b y

â  + 6y + a cos ay.
Now it is clear that there is no reason to explicitly replace »x' in (2)

by 'a*. We can simply differentiate (2) directly treating x as a constant

( 3 ) x ^ + 6 y + X c o s x y
and we can regard this new expression as defining a new function on all of

This new funct ion is cal led a part ial der ivat ive of f , in this case the

part ial derivat ive of f with respect to i ts second argument. We shal l

f | or Dgf .^ Dgf * are symbols for a new function of two variables.

fgCx.y) = D2^(x#y) = X + 6y + X cos xy
and we can substitute in this formula as we please, for example

f2(a,3) = â  + 18 + a cos 3a
D2f(0,0) - 0.

The part ial derivat ive (5) is often cal led the part ial derivat ive with

respect to y and denoted

W e s h a l l r e s e r v e t h i s n o t a t i o n f o r a s l i g h t l y d i f f e r e n t , b u t c l o s e l y r e l a t e d ,

si tuat ion. (See p. 8-52.)



Siniilarly, we can treat y as a constant and differentiate with respect
t o X . T h e n w e g e t

l\f(x,y) = f{(x,y) = 18x̂  + 2xy + y cos xy,
ca l l ed the pa r t i a l de r i va t i ve o f f w i th respec t t o the fi rs t va r iab le . Th is

new partial derivative tells about the behavior of f along lines of the form

y ^ b. More precisely, f^(x,b) is the
slope of a l ine tangent to the curve 3'

z = f(x,b)

which we may think of as the intersection /\
of the plane y = b with the graph of f. / j j j y

Partial derivatives suffer from the \/ 1/
fact that they look at f along lines Z ^
o n l y , a n d o n l y a l o n g l i n e s p a r a l l e l t o

Plane section of graph
t h e a x e s a t t h a t . I t i s t h e r e f o r e a ( n o t t h e f u n c t i o n o f t h e t e x t )

b i t s u r p r i s i n g t h a t f o r t h e f u n c t i o n s

commonly encountered the information contained in the partial derivatives

suffices to compute directly the behavior of f along any smooth curve.

The criterion for this favorable situation is simply that the partial derivatives

themselves are continuous functions. Any function defined by an elementary

formula wi l l fu lfi l l th is condi t ion as long as the par t ia l der ivat ives ex is t .

Functions of three or more variables (ie., functions from part of to

B) are handled the same way. Partial derivatives are computed by keeping all
but one of the variables constant. If f depends on three variables, we

find f^ by keeping the first two variables constant and differentiating with
respect to the th i rd. This amounts to looking at f a long l ines paral le l to

the third coordinate axis. Suppose

f(x,y,z) = sin (x + y^ + 22).

f* (x,y,z) = 2x cos (x̂  + ŷ  + 2z),
= 3ŷ  cos (x̂  + ŷ  + 2z),

f̂ (x,y,z) =» 2 cos (x̂  + ŷ  +2z).



Note that to compute partial derivatives of a function given explicitly by a

f o r m i a l a y o u n e e d n o n e w r u l e s f o r d i f f e r e n t i a t i o n s J u s t t h i n k o f a l l b u t o n e

var iable as constant whi le d i f ferent iat ing. Af ter you have d i fferent iated, the

result is once again regarded as a function on all of the original domain

(or something smaller if the derivative fails to exist at some points).

E x a m p l e . .

g ( x . y ) = — .

H e r e g i s d e fi n e d e x c e p t o n t h e l i n e x + y = 0 .

- *1/3
S2^*»y) ~ J. „\Z

for al l < X, y > in the original domain.

1 - 2 / 3 1 / 3

and now we must exclude all points of the second axis, x = 0, because of the

f a c t o r T h e fi r s t p a r t i a l d e r i v a t i v e o f g d o e s n o t e x i s t a t t h e s e

p o i n t s ,

S x e r c i s e s . D i s c u s s t h e d o m a i n s o n w h i c h t h e f o l l o w i n g f o r m i i l a s d e fi n e f u n c t i o

a n d c a l c u l a t e t h e i r s e v e r a l p a r t i a l d e r i v a t i v e s .

1 . f ( x , y ) =

2. g(x,y) = X cos y - y

3. h(x.y)=-^^
f(x,y,z) = sin (xy^z^)

5 . g ( x , y , z ) eX y log (z + x^)

6. h(x,y,z) = v^xyz (Discuss also where the partial derivatives are defined.

7 . I f f ( x , y ) = c a l c u l a t e f ' , ( = ( f ' ) J ) , a n d

8 . L e t V b e t h e l i n e a r s p a c e o f a l l f u n c t i o n s f r o m t o I R . S h o w

that the set W of those functions f for which Dj^f is everywhere
d e fi n e d i s a l i n e a r s u b s p a c e o f V a n d t h a t D l : W V i s a l i n e a r



8.2.6 Higher order partial derivatives. The partial derivatives just considered
are ca l l ed co l l ec t i ve l y fi rs t -o rde r pa r t i a l de r i va t i ves . S ince the fi rs t -o rde r

part ia l der ivat ives of a funct ion f : S —. are themselves funct ions from

£ to m, we can differentiate them again to get what are called second-order

partial derivatives. If f is a function of two variables, we shall have two
first-order partial derivatives, f^ and f', and these will have two partial
derivatives each making four second-order partial derivatives of f, namely

^ 11 " • h z ' ^ 2 1 * ^ 2 2 *

Then there will be eight third-order partial derivatives, etc. A function of

three real variables will have three first-order partials, nine second-order,

27 th i rd-order, e tc .

If f is a polynomial function, it is easy to see that f'* = f'^, and a
little experimentation with familiar functions suggests that this is usually the

case. Indeed so. In 8.3.22 we shall prove a theorem to the effect that

^12 - ^21

whenever these functions are continuous, fijcamples can be given for which this

equation fails, but it is valid for all functions given by elementary formulas

a s l o n g a s t h e d e r i v a t i v e s e x i s t .

If f is a function of more than two variables, the theorem just mentioned

is still applicable because f** and fj^ are both computed by keeping fixed
the variables numbered 3f ..., n. If fj|^* should exist and be continuous
when the variables are allowed to vary over the whole domain of f, then it

will also be continuous when only the first two variables are allowed to vary.

T h e a c t u a l n u m b e r i n g t o t h e v a r i a b l e s d o e s n ' t m a t t e r , s o w e h a v e , f o r

• x a m n l e .

. p w f _ » , f » f t _ x » t t^ 2 ' i "

p r o v i d e d t h e s e d e r i v a t i v e s a r e a l l c o n t i n u o u s .

The theorem applies as well to partial derivatives of orders higher than

the second. I f the par t ia l der ivat ives of f through order three are a l l
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f * » » - f * * * « f . * * * - _ f * » *^123 " ^132 ~ ^312 " ^321 " ^231 ~ ^213'
T h e f i r s t © f t h e s e e q u a t i o n s f o l l o w s f r o m a p p l y i n g t h e t h e o r e m f o r s e c o n d - o r d e r

partials to fj^. Similarly for the third and fifth equalities. Since

^13 ^ ^31 domain o f f we must have
i s , f - ' = f - . S i m i l a r l y , f - = f ' - .

S u p p o s e f i i s a n o p e n s u b s e t o f A f u n c t i o n f t S — > ] R i s s a i d t o

b e a f u n c t i o n o f c l a s s C i f a n d o n l y i f a l l o f i t s p a r t i a l d e r i v a t i v e s

t h r o u g h o r d e r k e x i s t a t e a c h p o i n t o f E a n d a r e c o n t i n u o u s o n E . F o r

s u c h a f u n c t i o n t h e o r d e r o f s u c c e s s i v e d i f f e r e n t i a t i o n s i s i m m a t e r i a l u n t i l

k differentiations have been performed. Counting all ways of doing the
J,

d i f f e ren t i a t i on , t he re a re n pa r t i a l de r i va t i ves o f o rde r k , bu t t he

equalities cut this down to n(n+l)(n+2).••(n+k-l)/kt distinct ones.

A function is of class C® if and only if all its partial derivatives
of every order exist (in which case they must be continuoxis).

The symbols *C^' and are also used to denote the set of
a l l f u n c t i o n s o f c l a s s o r . T h e s e s e t s a r e l i n e a r s u b s p a c e s o f t h e

s e t o f a l l f u n c t i o n s f r o m E t o 3 R .

All of the so-called elementary functions (those compoiinded with addition,

subt rac t ion, mul t ip l ica t ion, d iv is ion, rad ica ls , exponent ia ls , logar i thms,

and trigonometric functions) are C® except for "thin" sets in their domain.
If no radicals are involved there are no exceptional points at all. For

example, log (sin x + e^) is defined for those < x, y, z > for which
sin X + > 0 and is c" on the whole of this domain. Fractional power
funct ions are not infini tely di fferent iable at zero. Consequent ly, compounds

involving radicals need not be differentiable at points where a radicand is zero.



E x o r c i s e s .

1, Calculate the four ( three di fferent) second-order part ia l der ivat ives of

t h e f u n c t i o n s h a v i n g f o r m u l a s

(a) (b) (x + y) cos (x - y) (c) + y^

2. Show that the functions with formulas log (x̂  + ŷ )» arctan ̂  ,
and e*cos y are all solutions of the second-order partial differential

e q u a t i o n

k n o w n a s L a p l a c e ' s e o u a t i o n .

f:: + fi; = 0,

3 . S u p p o s e g i s a p a r t i c u l a r s o l u t i o n o f t h e l i n e a r p a r t i a l d i f f e r e n t i a l

e q u a t i o n w i t h c o n s t a n t c o e f fi c i e n t s

afjil -f bf'* + cf'* + rf' + sf' + tf = 0.
Show that and gg are also solutions (assuming g e Ĉ ).
4. Prove that f^J = ^21 ^ ^ polynomial function from to E.

5 . S h o w t h a t t h e f o l l o w i n g f u n c t i o n f i s a n d i t s m i x e d p a r t i a l d e r i v a t i v e s

(f*' and f'*) exist everywhere, but f{^(0,0) ^ f2{(0,0).

f (x,y) = if < X, y > ^ < 0, 0 >

f(0,0) = 0

6. Can there be a Ĉ -function f s —>3R such that f̂ (x,y) = cos (1 + x̂ y)
and fl(x,y) = sin (1 + x^y) ? Can there be a C -̂ fianction g : 3R^ —» IR

g'(x,y) = y sin x̂ ^ and g2(x,y) ̂  x sin x̂ ŷ  7



m

8.2.7 Maxima and minima. Consider the function f ! IR —> K given by

f(x,y) = (x^ +2y2 - 9)(x +2y).
I t i s c l e a r t h a t f i s z e r o o n t h e e l l i p s e w h o s e e q u a t i o n i s

x^ + 2y^ - 9

a n d o n t h e l i n e x + 2 y - 0 . T h e s e c u r v e s d i v i d e t h e p l a n e i n t o f o u r

r e g i o n s . T h e s i g n o f f i n e a c h o f
f > 0these regions is shown on the sketch. ^

Somvrhere in the lower left half- f ^ ^ J
el l ip t ica l region f must achieve ^f> 0
a maximum, and somewhere in the upper f < 0
r i g h t h a l f i t m u s t a c h i e v e a m i n i m u m .

(See the discussion on page 8- 9.) Where are these points and what are these

m a x i m u m a n d m i n i m u m v a l u e s o f f ?

Suppose the maximiom is achieved at < a, b >. Then, considered only along

the line x = a, f must achieve a maximum for y = b. Therefore, the

der ivat ive of f a long th is l ine must vanish at y - b; that is

f^(a,b) = 0.
Similarly, f must have a maximum for x = a along the line y = b, so

f* (a,b) = 0.

T h u s w e h a v e t w o c o n d i t i o n s t h a t t h e u n k n o w n v a l u e s a a n d b m u s t

s a t i s f y a n d w e m a y e x p e c t t h a t t h e s e c o n d i t i o n s w i l l e s s e n t i a l l y d e t e r m i n e

a a n d b . S i n c e

fi(x,y) = 3x̂  + + 2y2 - 9
flCx.y) = 2x^ + ifxy + 12y^ - 18,

t h e e q u a t i o n s f o r a a n d b a r e

3a^ + iWib + 2b^ - 9=0
2a^ + ^b + 12b^ - 18 = 0.

j m



If we double the first of these equations and subtract the second, we get

t h a t i s ,

- 8b^ = 0

ifCa + 2b)(a - b) =0.

Hence either a ^ .2b, in which case (substituting back in (8) )

< a, b > = < \/6, - |>/6 > or < -v/i", >,
o r a = b , i n w h i c h c a s e

< a , b > = < 1 , 1 > o r < - ! , - ! > .

The first two of these points are the points where the line x + 2y -0

crosses the ellipse, so they are not the points we want. The others fall

one in the lower left half-ellipse, the other in the upper right half. Since

there is only one point in the lower left half at which both f^ and f*

vanish, this point must be the maximum point. Hence the largest value taken

b y f o n t h e e l l i p t i c a l r e g i c a i i s f ( - l , - l ) = 1 8 .

The same argument shows that the minimum value of f on the upper right

half-ellipse occurs also at a point at which both f* and f* vanish, so it
must be at < 1, 1 > and the minimum value of f on the elliptical region
i s f ( l , l ) = - 1 8 .

The argument we have just used is quite general and it leads to a solution

of many maximum and minimum problems in several dimensions. We formalize the

i d e a s f o r r e f e r e n c e .

8.2.9 Definition. Suppose E is an open set in and f is a function from

E to IR. The point p 6 E is a local minimum point for f if and only if
there is a neighborhood N of p such that

^'(P) < f (q) for all q € N.
The point r € E is a local maximum point for f if and only if there is

a n e i g h b o r h o o d U o f r s u c h t h a t

f(r) > f(q) for all q € U.

This means that p is a minimum point in comparison with its immediate

neighbors only. I t is quite possible that f takes a smaller value at some



point s remote from p. An actual minimum point for f must also be a

l o c a l m i n i m u m p o i n t , b u t n o t v i c e v e r s a .

8 . 2 . 1 0 T h e o r e m . I f E i s a n o p e n s e t i n a n d t h e f u n c t i o n f s E — > ] R

has. a local minimum (or maximum) at p € E and 41 ^ partial derivatives

^2* ' * * ♦ ^ P» ^hen these i^artial derivatives vanish ^ p.

T h e t h e o r e m g i v e s u s a n o f t e n e f f e c t i v e d e v i c e f o r fi n d i n g m a x i m u m a n d

m i n i m u m p o i n t s . F i n d t h e p o i n t s , c a l l e d c r i t i c a l p o i n t s . a t w h i c h a l l t h e

firs t -o rder par t ia l der iva t ives van ish . Usua l ly there w i l l be on ly a fin i te

number of these and the required maximum or minimum point will be among them.

There are of course other possibilities for the maximum or minimum. They

might occur at some point where one of the partial derivatives fails to exist.

Moreover, there is always the possibility that there is no maximum or minimum

point. Recall Theorem 8.1.10 which guarantees the existence of a maximum

when the domain considered is bounded and closed. The maximum might occur at

a boundary point of the domain. At a boundary point Theorem 8.2.10 does not

^PPly» since p need not be a maxim\jm point in comparison with all of its

immediate neighbors in every direction. However, we can be sure that either

the maximum occurs in the interior (in which case Theorem 8.2.10 does apply)

or at a boundary point. This is a direct generalization of the familiar case

o f a f \ i n c t i o n o f o n e v a r i a b l e . T h e m a x i m u m v a l u e o f a d i f f e r e n t i a b l e f u n c t i o n

f over a bounded closed interval [a,b] in B occurs either at an interior

point c in which case f*(c) = 0 or at a boundary point, ie., either at

Sea rch ing t he bounda ry f o r a max imum o r a m in imum requ i r es a d i f f e ren t

approach. We illustrate by an example.

Example . F ind the max imum and min imum va lues o f

f(x,y) = 23x^ + 72xy + 2y^
o n t h e s o t w h e r e < 1 .



Since the set to be searched is bounded and closed, we are certain that

m a x i m u m a n d m i n i m u m p o i n t s e x i s t . T h e p a r t i a l d e r i v a t i v e s a r e

f[(x,y) = + 72y
= 7 2 x + ^ y .

These are both zero only at 0, 0 >. So if the maximiam or the minimum value

of f occurs at an interior point of the unit disk, i t must be at the origin.

However, f (0 ,0) = 0 , f ( l ,0 ) = 23 , and f ( l /2 , - l /Z ) = so i t i s
clear that the origin is neither a maximum or a minimum point. These points

mus t occur on the boundary.

Since the boundary is a smooth curve, we choose a parametrization for it,

say 11—» < cos t, sin t >. The required points must correspond to some

value of t, so we consider the function g where

g(t) = f(cos t, sin t) = 23 cos^ t + 72 sin t cos t + 2 sin^ t .
= 1^ + cos 2t +36 sin 2t.

We can find the maximum and minimum values of g by the familiar one-variable

g'(t) = - 21 sin 2t + 72 cos 2t.

This vanishes if tan 2t = 2^7, that is

2 tan t ^ 24
1 - tan^ t

whence tan t = 3/4 or - 4/3. Correspondingly,
< cos t, sin t>=: + <~, !•> or

Then f achieves it maximum value, 50, on the disk at the two boundary points

1 < V5. 3/5 > and its minimum value, -25, at the points + < 4/5, -3/5 >.
There is another method, called the Lagrange multiplier method, that is

useful in finding maxima or minima along curved boundaries. We shall study it

in section 8.5. Compare our work with that of section 6.3.
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In section 8.4 we shall take up a method for deciding (in most cases)

whether a critical point is a local maximum point or a local minimum point.

It is analogous to the second derivative test for functions of one variable.

E x e r c i s e s .

1 . F i n d t h e m a x i m u m a n d m i n i m u m v a l u e s o f

(x - 2y)(x^ + - 15)
o n t h e d i s k < 1 5 .

2 . F i n d t h e m a x i m u m a n d m i n i m u m v a l u e s o f

x^y^d - X - y)
on the triangular domain where x > 0, y > 0» and x + y < 1.

3 . F ind the max imum and min imum va lues o f

x^zCl - X - y - z)
o n t h e t e t r a h e d r a l d o m a i n i n t h r e e s p a c e w h e r e x > 0 , y > 0 , z > 0 , a n d

X + y + z < 0.

4 . F i n d t h e p o i n t s o f t h e s u r f a c e

t h a t a r e c l o s e s t t o t h e o r i g i n .

3 . C o n s i d e r a l l p l a n e s i n t h r e e - s p a c e t h a t p a s s t h r o u g h < 1 , 2 , 3 >

and mee t t he pos i t i ve x - , y - , and z -axes . t
W h i c h o f t h e s e c u t s o f f t h e t e t r a h e d r o n / 1 t

o f l e a s t v o l u m e T / i i i r -
6 . W h a t a r e t h e m a x i m u m a n d m i n i m u m v a l u e s o f

2 2
x - »■ x y - y

on the unit square (the set where 0 < x < 1 and 0 < y < 1) ?

On the unit disk (the set where x^ + y^ < 1.) ?



8 . 3 T h e t o t a l d e r i v a t i v e o r d i f f e r e n t i a l o f a f u n c t i o n f r o m V t o R .

T h e b a s i c i d e a o f d i f f e r e n t i a t i o n i n h i g h e r d i m e n s i o n s i s t h e s a m e a s i t

i s i n o n e d i m e n s i o n . G e o m e t r i c a l l y , i t i s d r a v d n g a t a n g e n t t o t h e g r a p h o f

t h e f u n c t i o n . A n a l y t i c a l l y , i t i s a p p r o x i m a t i n g t h e f u n c t i o n b y a f u n c t i o n

of first degree. The tangent to a surface in three-space will be a plane, not

a line, and in higher dimensions it will be a hyperplane or "flat" space of

higher dimension. The dimension of the tangent to a surface of high dimension

will always be the same as that of the surface. Of all the higher dimensional

cases the only one we can visualize is that of a function from to JR.

We shall begin with a primarily geometric treatment of that case. Then we

shall derive the same results more rigorously using analysis. The analjrtic

argument has the clear advantage that it is applicable immediately to any

dimension. The geometric approach, on the other hand, can provide us with

images that make the analytic formulas highly plausible.

8.3.1 Inhomogeneous l inear functions. If V is a vector space, the function

g : 7 ]R is called inhomogeneous linear or a function of the first degree

if and only if it can be represented as the sum of a constant and a linear

functional g : V—>11. If V =21^, this means

g(x,y) = oC + y3 X -I- yy

for some numbers o(, and y . Here the linear functional is given

b y f C x . y ) = + y y.

T h e g r a p h o f s u c h a f u n c t i o n i s a h y p e r p l a n e i n V x I R . I f V h a s

d i m e n s i o n n , t h e n V x E h a s d i m e n s i o n n + 1 a n d t h e g r a p h i s a c o s e t

o f a l i n e a r s u b s p a c e o f d i m e n s i o n n . F o r e x a m p l e , i f V = t h e n

V X B = The graph ^f g (above) is the set of all < x, y, z >

( 2 ) z = + p x + y ^ y .
This is the <0, 0, o( >>eo8et of the linear space spanned by <1,0, /3>
and <0,1, y >. Conversely, any plane not containing a line parallel to

the z-axis has an equation of the form (2) and hence can be regarded as the



g r a p h o f a n i n h o m o g e n e o u s l i n e a r f u n c t i o n f r o m B t o E . T h i s m e a n s t h a t
3 2any p lane in = E x B tha t i s the graph o f a func t ion is the graph o f

a n i n h o m o g e n e o u s l i n e a r f u n c t i o n .

Exercise. Proves If g t V —»B is an inhomogeneous linear function, say

g - + g , w h e r e g i s l i n e a r , t h e n f o r a n y v, b € V

g(v) = g(b) + g(v - b).

8.3.3 The tangent plane. Suppose that f is a function >B. The graph

of f, that is, the set of all < x, y, z > in T? such that

z = f(x,y)

is a surface S in ]R ,̂ Let q be a point of S; say q = < x̂ , ŷ , >.
Final ly let P be the plane tangent to S at q. (We assume i t is intu i t ively

clear what a tangent plane is. Also we assume that the tangent plane exists:

Not every surface has tangent planes at every point. For example, what would

y o u m e a n b y a p l a n e t a n g e n t t o a c o n e a t i t s v e r t e x ? ) We w a n t t o fi n d t h e

equation of P. We assume it contains no line parallel to the z-axis, so it

is the graph of some inhomogeneous linear function, that is, it is given by

z = t3C + px + Y y

for suitable constants o<, ^3^ and y these numbers?

The plane y = y^ cuts S in a curve C passing through q. We make
the plausible assumption that the line tangent to C at q lies in the plane P.

(This cannot be made into a rigorous argument without a definition of the

tangent plane, and we have none as yet.) We can regard x and z as coor
dinates in the plane 7 = 7^- Then C is just the graph

z = f(x, y^)

The slope of the tangent to C at q is given by the derivative for x = x ,̂
t h a t i s .

The equation of the tangent is therefore



M Z ' y ^ ) ( x - x ^ ) +

If M is interpretod in E ,̂ it describes a whole plane. To obtain just
t h e t a n g e n t l i n e w e m u s t a d j o i n t h e e q u a t i o n

T h e p l a n e t a n g e n t t o a s u r f a c e

c o n t a i n s t h e l i n e s t a n g e n t t o
c u r v e s l y i n g i n t h e s u r f a c e .

Similarly, the plane x = cuts the surface S in a curve P passing

through q. Us ing z and y as coord inates in th is p lane, the equat ion o f

r i s
® y )

a n d t h e t a n e e n t t o P a t a h a s t h e e o i i a t l o n s

z = fl(x - V )(v - Vy J ^ y - y J +

N o r t h e D i a n e d a s e r l h a d f a v

2 = ^*1'(x^. y^)(x - x^) + fj(x^, yj{y - y^) + z

contains both of the lines (^>-(5) and (6). Since there is Just one plane

passing through two intersecting lines in three-space, P must be the plane

c r l v A M h v ( 7 ^ -



In the figure the surface S appears to be convex. Therefore it l ies

e n t i r e l y o n o n e s i d e o f i t s t a n g e n t p l a n e . T h e r e a r e s \ i r f a c e s , h o w e v e r , w h i c h

t h e i r t a n g e n t p l a n e s l o c a l l y a t e v e r y p o i n t . C o n s i d e r , f o r e x a m p l e , a

s a d d l e . I n s o m e d i r e c t i o n s i t c u r v e s t o w a r d s y o u a n d i n o t h e r s , a w a y. T h i s

means that the surface of the saddle lies partly on one side of its t^inf^ent

p l a n e a n d p a r t l y o n t h e o t h e r .

We can look at this phenomenon analytically. A typical saddle-shaped

surface is a hyperbolic paraboloid (see figure, page 6-96). An example is

g i v e n b y
2 2

z - X - y .

The tangent plane to this surface (obtained from (7) using f(x,y) - x^ - y^)

z = 2x^(x - x^) - 2y^(y - y^) +

= 2x̂ x - 2ŷ y - x/ + y/.
(Beoause < x^, y^, > Is on the surface, This plane
lies below the surface (8) along the line y = y^ since

for all X except x^. On the other hand the tangent plane lies above the
s u r f a c e ( 8 ) a l o n g t h e l i n e ^ s i n c e

< 2x/ - 2ŷ y - x/ + ŷ
f o r a l l y e x c e p t y .

Our derivation of (7) as the equation of the tangent plane amounts to

t h i s : I f a t a n g e n t p l a n e e x i s t s a t < > » t h e n ( 7 ) m u s t b e i t s

equation; in particular^ the first order partial derivatives f^ and f*
must exist at < y^ >•

What about the converse? If f;[(xQ» y )̂ and f̂ U^# 7 )̂ exist, will there
be a tangent planeT Not necessarily. The function f of section 8.1, page

8-10, although it is not even continuous at < 0, 0 >, has both partial
derivatives there. Since these partial derivatives are both 0, the only



candidate for a tangent plane is z = 0 (ie., the x-y plane). We wouldn*t

want to call this plane tangent to the graph of f, because, for example, it

seems to bear no relation at all to f over the line ^ = y. On this line

f is constant l/2 except at the origin where it is 0. Except for this one point

the corresponding portion of the graph of f lies far away from our hypothetical

t a n g e n t p l a n e . T h i s e x a m p l e s h o w s u s t h a t w e w o u l d n ' t w a n t t o d e fi n e t h e

tangent plane using partial derivatives and equation (7). The definition we

shall adopt (in Q,'}.!?) says that the tangent plane at q to a surface S

is a p lane through q tha t l ies except iona l ly c lose to S near q . (Reca l l

that the l ine tangent to a curve C through a point p is the l ine through

p that l ies closest to C in the immediate neighborhood of p.) When the

tangent plane exists, it will of course be given by equation (7), but we must

not expect the tangent plane to exist just because (7) makes sense.

8 . 3 . 9 T h e c h a i n r u l e . S u p p o s e n o w t h a t < p t i s a f u n c t i o n w h o s e g r a p h

i s a s u r f a c e 3 w i t h a t a n g e n t p l a n e a t ^ > a n d t h a t t h e

parametric curve P

( 1 0 ) t » — > < f ( t ) , g ( t ) , h ( t ) >

l ies in S and passes th rough q a t the t ime t = t . Ana ly t i ca l l y, th i s

m e a n s t h a t

h(t) = cp(f(t), g(t))

f o r a U t , a n d h ( t ^ ) = z ^ .
We think of (10) as a motion and regard its velocity vector at time t

o

as emanat ing f rom q. Since th is vector is tangent to P, i t l ies in the plane

tangent to S a t q . The paramet r i c descr ip t ion o f the l ine tangent to P is

t —» < Xo, y^, > + (t - t^) < g'(t^), h'(t^) >

and the tangent plane to S at q has the eqiiation



T h e f a c t t h a t t h e l i n e t a n g e n t t o P l i e s i n t h e p l a n e t a n g e n t t o S b e c o m e s

( t - t ^ ) h ' ( t ^ ) = y ^ ) ( x - x ^ ) ( t - y ^ ) ( t - t ^ ) g ' ( t ^ )
for all t. Cancelling out the (t - t^)jthis is equivalent to

( 1 2 ) h - ( t ^ ) = y ^ ) f . ( t ^ ) + y ^ ) g .

This i s a fo rmula fo r the der iva t ive o f h g iven by (11) . In fac t , i f f

and g are any differentiable functions with f(t^) = ~ ^o*
can define a funct ion h by (11) and then the parametr ic curve P given by

( 1 0 ) w i l l l i e i n S t h e g r a p h o f T h e n ( 1 2 ) f o l l o w s f r o m o u r b e l i e f t h a t

t h e t a n g e n t t o a c u r v e i n S m u s t l i e i n t h e p l a n e t a n g e n t t o S a t t h e s a m e

Since the choice of t^ in (12) is arbitrary (except that we require that
S have a tangent plane at < f(tQ), g(tQ)» ^e can replace t^ by t;
i e . , i f h i s g i ven by (11 ) t hen

(13) h*(t) = 90^(f(t), g(t))f(t) + 9p2(f(t), g(t))g'(t)
for al l t . This is a two-dimensional form of the chain rule fop finding the

d e r i v a t i v e o f a c o m p o s i t e f u n c t i o n .

T h e r e i s a n i c e i n t e r p r e t a t i o n o f t h i s c h a i n r u l e . S u p p o s e t h a t a p l a n e

h a s b e e n h e a t e d i r r e g u l a r l y a o t h a t i t s t e m p e r a t u r e v a r i e s f r o m p o i n t t o p o i n t .

Put coordinates on the plane as usual and say that cp (x,y) is the temperature

a t t h e p o i n t < x , y > . N o w i m a g i n e a n o b s e r v e r m o v i n g i n t h e p l a n e a l o n g

t h e p a r a m e t r i z e d c u r v e

t > < f ( t ) , g ( t ) > .

Then h(t) is the temperature observed at the t ime t. Then (13) says that

the rate h*(t) of temperature variation at any time is the sum of two contri

butions, one cjP^(f(t), g(t))f*(t) due to the component of the velocity in the
x-direction and another <p2^f(t), g(t))»g*(t) due to the component , in the y-
d i r e c t i o n .

L e t u s d e s c r i b e w h a t w e h a v e d o n e i n m o r e g e n e r a l t e r m s . G i v e n a f u n c t i o n

F ! B —>11^ and a function > R, we form the composite function



<fof s m""—>B.

Granting that cp and F are differentiable, we would l ike a formula for the

derivative of (p oF.

Iflfe can express F with component functions f and g, that is

F(t) = < f ( t ) , g( t ) >.

Thon (9'oF)(t) = 9P(f(t), g(t)) = h(t), so cpof = h. Thus (13) is the
desired formula for the derivative of cp of.

Note that (13) is a direct generalization of the chain rule for the derivative

o f a c o m p o s i t e f u n c t i o n k = y / o f w h e r e a n d f a r e b o t h f u n c t i o n s f r o m

B t o ] R . A c c o r d i n g t o t h e u s u a l c h a i n r u l e

k ' ( t ) = V M f ( t ) ) f ( t ) .

Equation (13) is much like this one, the principal difference being that (13)
has two terms corresponding to the two arguments ot <p , It is easy to guess

the formula for the derivative of a composite function of the form

m — a .

I f t h e fi r s t s t e p i s g i v e n b y

t • - » < f g C t ) , f ^ ( t ) >

and the second is (p ^ then the composite is

h ( t ) = y t ) )
a n d t h e d e r i v a t i v e i s g i v e n b y

h ' ( t ) = ( D j ^ f ) ( f j ( t ) , f g C t ) +
( D g f X r ^ C t ) , f 2 ( t ) +

f2(t),.... f„(t))f;(t)
Note that here means the opdlnaiy derivative of the function f^. Since
this function has only one argument, it doesn't have partial derivatives. We

have used the -notation for the i-th partial derivative of <p to reduce the

possibi l i ty of confusion in the Interpretat ion of subscr ipts.



8.3.15 Approximation by inhomogeneous linear functions. Now we shall look at

the same ideas in analytic terms. Instead of finding a plane tangent to the

graph of f, we find an inhomogeneous l inear function that approximates f

v e r y w e l l .

Suppose to start with that f is a function from 1? to E, say,
f(x»y) = 2xy + 2x - y + 5.

This is a continuoxis function so, near the origin, it can be approximated by

its value f(0,0) = 5. The error in this approximation wi l l general ly be of

the same order of magnitude as the deviation of the argument from < 0, 0 >.

F o r e x a m p l e , i f x - y = . 0 0 1 , t h e n

|f(x,y) - 5| = 15.001002 - 51 - .001002

and this is about the same size as || < x, y > || - (»Q01) \fz.

However, if we include the first degree terms in our approximation, that is

if we approximate f by g where g(x,y) = 5 + 2x - y, then the error

|f(x,y) - g(x»y)|

is a good deal smaller than || < x, y > ||. For example, as long as

||< X, y >11 < .001,

|f(x,y) - g(x,y)| = |2xy| = 2|x|.|y|

<2(.001)||<x, y >11

(because |x| < .001 and |y| < || < x, y > || ).

Suppose instead we wanted to approximate f near < 1, 1 >. Since

f(l, l) = 8, we can approximate f roughly near < 1, 1 > by the constant

function 8. We can do much better if we allow some first degree terms.

I'Cx.y) = 8 + if(x - 1) + (y - 1) + 2(x - l)(y - 1)

h(x,y) = 8 + ^(x - 1) + (y - 1).



I f we t i se h in p lace o f f fo r < x , y > near <1 , 1 > , the e r ro r

will be small relative to || < x, y > - < 1, 1 > ||, In fact,

|f(x,y) - h(x,y)| = |2(x - l)(y - 1)|
< 2 6 I) < X, y > - < 1, 1 > 11,

provided 11 < x, y > - < 1, 1 > 11 < S .

S t a r t a g a i n w i t h a n e w f u n c t i o n , s a y

f(x,y) = xy ,

and suppose we want to approximate f near <1, -1 >. Temporarily put

x - l + u , y = - l + v . T h e n

f(x,y) = (1 + u)(- 1 + v)^
= 1 + u - 2 v - 2 u v + V + u v -

We take as approx imato r

e C x . y ) = l + u - 2 v = l + ( x - l ) - 2 ( y + 1 ) .

T h e e r r o r i n o u r a p p r o x i m a t i o n w i l l b e

li'Cxjy) - g(x»y)| = I - 2uv + + uv^l
<2|u|.|v| + + |u|.|v|2

< u, V >11

provided || < u, v > || < S < 1. We can rewrite this

lf(x,y) - g(x,y)| < II < X, y > - < 1, -1 > II

as long as || < x, y > - < 1, -1 > || < S < 1. Again the error is small

relative to the deviation of the argument from the chosen point <1, -1 >,

f l + . • P n > » e m a i l 4 » + " <

It should be clear how we can find similar approximations for any polynomial

f u n c t i o n n e a r a n y p r e s c r i b e d p o i n t . F o r m o r e c o m p l i c a t e d f u n c t i o n s t h e e x i s t e n c e

of good first degree approximations is less obvious; in fact there are functions

which cannot be so approximated near some points. We take the existence of

s u c h a n a p p r o x i m a t i o n a s t h e d e fi n i t i o n o f



Let f be a real-valued function defined on some neighborhood of a point

< a , b > i n . W e s a y t h a t f i s d i f f e r e n t i a b l e ^ < a , b > i f

a n d o n l y i f t h e r e e x i s t s a n i n h o m o g e n e o u s l i n e a r f u n c t i o n g : — > B s u c h t h a t

(V e > 0)(3 ^ > 0)(Vx,y) II < X, y > - < a, b > II < S =>
( 1 6 )

|f(x,y) - g(x,y)| < £|| < X, y > - < a, b > ||.

Compare this with 5), page 7-5.

There can be at most one such function g. (The proof is left to you.

T h e r e a r e s u g g e s t i o n s i n e x e r c i s e 6 . )

T h e c o n n e c t i o n b e t w e e n t h i s d e fi n i t i o n a n d o u r p r e v i o u s w o r k l i e s i n t h e

f o l l o w i n g f a c t .

8.3.17 The plane tangent to the graph of f at the point < a, b, f(a,b) >

i s t h e g r a p h o f g .

The re i s no way we can p rove t h i s s ta temen t , because we s t i l l have no

definition of the tangent plane. In fact we shall adopt this statement as

the definition of the tangent plane.

T h i s b e g i n s t o s o u n d l i k e s o m e s o r t o f l o g i c a l h o c u s - p o c u s . I n a s e n s e

we are free to define tangent plane as we please, but this is not really so.

The point is that the analytic definition of tangent plane does indeed capture

the geometric idea of tangent plane. We may not be able to prove it, but you

should convince yourself that it is true. We have introduced the idea of tangent

planes into this analytical discussion just to build a bridge to the more

intuitive, but for many more vivid, realm of geometry. Technical proofs about

di fferent iat ion wi l l a l l be carr ied out in analyt ica l terms i is ing (16) . As

far as proofs are concerned, we could as well omit all references to geometry.

Our next step is to show by analytical argument that the function g of

(16) is given by

(19) g(x,y) = f(a,b) + f^(a,b)(x - a) + fj(a,b)(y - b).
This is the analytical version of the geometrical argument leading to (7).



To b e g i n i fi t h w e k n o w t h a t

g(x,y) = o( + /9x+ yy
for some o(, y3, and y. If (16) is true,.then g(a,b) must be f(a,b).
(No ma t te r wha t € . and S a re , t he cho i ce x - a , y - b f u l f i l l s t he

condition tl<x, y>-<a,b>||<8, so |f(a,b) - g(a,b)| < £*0. )
H e n c e

f(a,b) = o( + ^a + yb,

s o w e c a n w r i t e

g(x,y) = f(a,b) + y6(x - a) + )<(y - b).

It remains to show that ^ - f^(a,b) and y - f2(a,b).

To t h i s e n d c o n s i d e r p a i r s < x , y > o f t h e f o r m < a + h , b > . G i v e n

e > 0 and the corresponding 8 from (16), if 0 < |h| < 8 , we shall have

II <a -hh, b>-<a,b>|| = |h| < h and therefore

|f(a-fh,b) - g(a-rti,b)| < 6|h|.

Substituting the value of g(a-fh,b) from (18) and dividing through by |h|.

- U

But this says precisely that p is the derivative at a of the function
X •—> f(x,b),

and this is exactly f^(a,b). Thus ^ = f^(a,b). Similarly, ^ ~ f2^a,b).

W e c o m e n o w t o t h e c h a i n r u l e . I f

h(t) - <p(f(t), g(t))

h'(t) - <p[(f(t), g(t))f(t) + <pj(f(t), g(t))g'(t),
p rov ided t ha t f , g , and Cp a re d i f f e ren t i ab le ( f and g i n t he usua l

sense, cp in the sense of (16)). This can be prcwed analytically, but the

argument is quite lengthy and we defer it to p. 8-^.



There is an important special case of the chain rule. Suppose

t I—> < f ( t ) , g ( t ) > i s a un i fo rm rec t i l i near mot ion ; tha t i s , f ( t ) - a + tu ,

g(t) - b + tv, where a, b, u, and v are constants. Then

h ( t ) ^ + t u , b + t v )
a n d

h'(0) (??{(a,b)u + qp (̂a,b)v
is called the derivative of cp at < a, b > along the vector <' u, v >.

The partial derivative <p^(a,b) is just the special case u - 1, v - 0.
When < u, V > is a unit vector, we can think of the parameter t as representing

distance instead of t ime. Hence, in th is case, the der ivat ive of <p alonf?

< u, V > can be interpreted as the rate of change of (p with respect to

d i s t a n c e i n a c e r t a i n d i r e c t i o n . S u c h a d e r i v a t i v e i s o f t e n c a l l e d a d i r e c t i o n a l

d e r i v a t i v e .

The derivative of <p at a fixed point < a, b > along a vector < u, v >

d e p e n d s l i n e a r l y o n t h e c h o i c e o f v . T h i s f o c u s s e s o u r a t t e n t i o n o n t h e

l i n e a r o p e r a t o r

< u, V > ♦—> <:jp (̂a,b)u + (a,b)T^

from R" to ]R. This linear operator is called the differential of cp at
< a, b >. We denote it dcp(a,b). Since we have coordinates, we can conveniently

r e p r e s e n t i t b y t h e r o w v e c t o r

cp^(a,b) cp'(a,b) II.
Since there is a row vector at every point < a, b >, there is a function

d<p : < a , b > <p:(a,b) S®I(a,b)

Th is func t ion d<p , ca l led the d i f fe rent ia l o f , i s defined on the domain

of cp (assiaming, of coiirse, that cp is differentiable at each point) and

i t s v a l u e s a r e r o w v e c t o r s . S u c h a f u n c t i o n i s c a l l e d a c o v e c t o r fi e l d o r

a differential form. (See also §7.^) The components of d<p are the first
order par t ia l der iva t ives o f <p in order.



T h i n k o f < u , v > a s t h e c o l u m n v e c t o r T h e n t h e d e r i v a t i v e o f

a l o n g a t < a , b > i s

an ordinary matrix product since d<p(a,b) is a row vector of length 2.

With this notation we can express the chain rule very neatly. Suppose

3 is an open set in ]R^ and eft iSis a differentiable function. Suppose
I is an interval in K and F ; I —» S is differentiable. Then cpo? : I-> 3R
i s d i f f e r e n t i a b l e a n d i t s d e r i v a t i v e i s

(qOoF)' =d9?-F'.

(Recall that F* is a column vector.) We must know where to evaluate these

vectors. F* is to be evaluated at® t and d<p at F(t).

3.3.19 Approximate calculation. Look back at our definition of differentiability,
The essential point is that a function is differentiable at < a, b > if it

can be well approximated by a suitable function of degree one near < a, b >.

W h e n i t e x i s t s t h i s fi r s t d e g r e e a p p r o x i m a t i o n i s a i v e n b v ( 1 8 ) w h i c h w e c a n

g(x,y) = f(a,b) + df(a,b)- | .
Note that df(a,b) is the first degree part of the approximating function g.

T o f o c u s o n t h e a n o r o x i m a t i o n a s n e c t w e m i e r h t w i r t t e

f (x .y> ~ f (a .b ) + d fCa.bV

provided || || is small. So far the view we have taken of this approximation
has been that we know f(x,y) and f (a,b) and the approximation condition (16)

determines the row vector df(a,b). But we often look at the situation the

other way about. We know f(a,b) and df(a,b) and we use (20) to estimate



Suppose, for example, that f(x,y) = x \/ x + y^. Then f(9,4) = 45-
Suppose we want to estimate f(9.1, 3.9). We have

df(x,y) = II V X + y2 + , ^ , T^=T H

<if(9,'+) - II 5.9 7.2

f(9.1, 3.9)~f5+ 115.9 ̂ -2 l|-l|.o;i|| =
T h e t r u e v a l u e i s ^ . 8 6 ' ^ 7 t o f o u r d e c i m a l s .

I f w e h a d u s e d t h e f a m i l i a r o n e - d i m e n s i o n a l a p p r o x i m a t i o n t o e s t i m a t e

f(9.1, 4) we would have considered

g(x) ^ x\/x + 16.

T h e n g ' ( 9 ) = 5 - 9 , s o g ( 9 . 1 ) 4 5 + ( 5 . 9 ) ( 0 . 1 ) . To o b t a i n f ( 9 , 3 . 9 ) w e

w o u l d h a v e c o n s i d e r e d

h(y) - 9>/9 + y2,
h*( i+) = 7.2, h(3.9) 45 +(?.2)(-0.1). Note that the two-dimensional approxi

mation procedure simply accumulates the two changes due to small variations in

the two arguments. This is quite a general fact. Small changes in the value of

a function due to small changes in the arguments are additive in the first

approximation. This simply reflects the fact that, in the first approximation,
the change in value is linear in the argument changes.

The two-dimensional approximation suffers from the same disadvantage that

t h e o n e - d i m e n s i o n a l o n e d o e s . T h e r e i s n o e s t i m a t e o f t h e s i z e o f t h e e r r o r

i n t h e a p p r o x i m a t i o n . I t i s p o s s i b l e t o g e t s u c h e s t i m a t e s u s i n g s e c o n d d e r i v a t i v e s

and we shall do this in §8.4.



E x e r c i s e s .

1 . F i n d t h e e q u a t i o n s o f t h e p l a n e s t a n g e n t t o t h e f o l l o w i n g s u r f a c e s i n B "

a t t h e p o i n t s i n d i c a t e d ,

(a) xyz - 6 at < 1, 2, 3 >

(b) z = x/y at < 6, 2, 3 >

( e ) z = a t < 1 , 1 , 1 >

(d) X + 2/ - - 3 at < 2, 1, 1
(e) z = sin xy at < 0, 2, 0 >

( f ) z = - 2 x y + a t < 1 , 1 , 0 >

2. Planes are drawn tangent to the surface given by z = xy -»■ 2y + x*^ at the

points <0, 0, 0 > and < 1, 1, ^ >. At what angle do they intersect?

2 2 23. The sphere x + y + z =6 and the surface z = 2xy meet in a curve.

What line is tangent to this curve at the point < 1, 1, 2 > ?

Justify the rule that the relative error in a product is approximately the

s u n o f t h e r e l a t i v e e r r o r s i n t h e f a c t o r s . ( T h e r e l a t i v e e r r o r m e a n s t h e

error divided by the true value.)

5 . T h e r e i s a d i f f e r e n t i a b l e f u n c t i o n f d e fi n e d n e a r < 1 , 1 > s u c h t h a t

f ( l , l ) = 1 a n d f o r a l l < x , y > , z - f ( x , y ) i s a s o l u t i o n o f
c 2

z^ - xyz + xz - y = 0.

F i n d t h e p a r t i a l d e r i v a t i v e s o f f a t < 1 , 1 > a n d u s e t h e m t o e s t i m a t e

f d . l , 0 . 9 ) .

6. Show that if h is an inhomogeneous l inear function that satisfies

(Ye>0)(as>0) ||<x, y>|| <S => |h(x,y)| < fc||<x, y >11
t h e n h i s e v e r y w h e r e z e r o . U s e t h i s t o p r o v e t h a t t h e r e c a n b e a t m o s t

one inhomogeneous l inear function g that satisfies (16). Note that there

i s n o l o s s o f g e n e r a l i t y t o t a k e < a , b > = < 0 , 0 > .

7 . Prove the fo rmula d( fg) = fdg + gdf , where f and g are d i f fe rent iab le

f u n c t i o n s f r o m t o B . N o t e t h a t f d g i s p o i n t w i s e t h e p r o d u c t o f



We shall now state the definitions and prove the principal theorems

c o n c e r n i n g t h e d i f f e r e n t i a t i o n o f f u n c t i o n s f r o m a n n - d i m e n s i o n a l i n n e r

p r o d u c t s p a c e t o B .

8.3.21 Definition Let 12 be an open set in a finite dimensional inner product

s p a c e V . L e t a € V a n d l e t f b e a f u n c t i o n f r o m 3 t o B . T h e n f i s

s a i d t o b e d i f f e r e n t i a b l e a i f a n d o n l y i f t h e r e i s a l i n e a r f u n c t i o n a l

h : V — s u c h t h a t

(V^ > 0)(3 ^ > 0)(\/v £ V) II V - a II < S

I f(v) - f(a) - h[v.a] I < II V - a li

Here and subsequently we have used [ ] to indicate where a linear functional

is acting on a vector. Before continuing the definition it is important to have

in mind the fact that the linear fimctional h, if it exists at all, is unique.

The proof of this fact in the general case is essentially the same as in the

two-dimensional case, so we omit it. See exercise 6, page 8-39. The linear

f u n c t i o n a l h i s c a l l e d t h e d i f f e r e n t i a l o f f a t a . v / e s h a l l u s u a l l y

w r i t e i t d f ( a ) . I f V o r i f V h a s d i m e n s i o n n a n d a l i n e a r c o o r d i n a t e

system has been introduced, vre shall take df(a) to be a row vector of length

n. In this case h[v-a] means the matrix product of the row vector h and

t h e c o l u m n v e c t o r v - a .

T h e f u n c t i o n f i s s a i d t o b e d i f f e r e n t i a b l e i f a n d o n l y i f i t i s

d i f f e ren t i ab le a t each po in t o f E . I n t h i s case d f t he d i f f e ren t i a l o f f .

i s a f u n c t i o n f r o m E t o V * o r t o t h e s e t o f r o w v e c t o r s .

2T h i s i s a n e x t e n s i o n o f d e fi n i t i o n ( 1 6 ) f o r I R w r i t t e n i n v e c t o r

n o t a t i o n . T h e i n h o m o g e n e o u s l i n e a r f u n c t i o n t h e r e i s

g(v) = f(a) + h[v - a] .

When f is differentiable and V is B*^, it follows from the same

arguments as on page 8-33 that

df(a) = II f'(a) f'(a) II



Hence the funct ion df is the row vector of part ia l der ivat ives of f :

d f . i i f - • f ; i | .

We have seen that, even in dimension two, the existence of its partial

der ivat ives is not suffic ient to guarantee that f is d i f ferent iab le . However,

the following theorem gives us a way of checking that f is differentiable

b y i n s p e c t i n g i t s p a r t i a l d e r i v a t i v e s . I f t h e y a r e c o n t i n u o u s , f i s d i f f e r

e n t i a b l e . T h i s c r i t e r i o n s h o w s i m m e d i a t e l y t h a t a n y f u n c t i o n g i v e n b y a s i n g l e

f o r m u l a i n t h e c o o r d i n a t e s i n v o l v i n g o n l y d i f f e r e n t i a b l e f u n c t i o n s i s i t s e l f

differentiable. (Radicals can cause trouble at a point where a radicand is zero.]

H e n c e t h e q u e s t i o n o f d i f f e r e n t i a b i l i t y c a n b e i g n o r e d i n t h e v a s t m a j o r i t y o f

8 . 3 . 2 2 T h e o r e m . L e t S b e a n o p e n s e t i n I R . L e t a e E a n d l e t f ^

a f u n c t i o n f r o m S t o m . . t h a t p a r t i a l d e r i v a t i v e s

f*, f^, ..., f^ are defined in a neighborhood of a ^ are continuous at a.
T h e n f i s d i f f e r e n t i a b l e ^ a ^

df(a) = II f^(a) f^Ca)

Proof. We shall give the proof only for n - 2. The proof for larger values

o f n i n v o l v e s n o a d d i t i o n a l i d e a s . W e s h a l l a l s o a s s u m e t h a t a = < 0 , 0 > .

This is no real loss of generality, but it makes the formulas look a lot less

c o m p l i c a t e d .

T h e i d e a o f t h e p r o o f i s t o e s t i m a t e t h e d i f f e r e n c e b e t w e e n f a n d t h e

alleged good linear approximation of f using the mean value theorem. Since

the mean value theorem, in the form that we know it, applies only to functions

of one variable, we break the difference into two parts in each of which only one

argument actually varies. (If the proof were for there would be n parts.)
W e m u s t e s t i m a t e t h e d i f f e r e n c e

D = f(x,y) - f(0,0) - xf'(0,0) - yf^(0,0).

We have to show that |D| is appropriately small whenever |f < x, y >|| is



s u f fi e l e n t l y s n a i l .

F i r s t w e r e p r e s e n t D a s t h e s u m

D = f(x,y) - f(x,0) - yf*(0,0)

+ f(x,0) - f(0,0) - xf[(0,0)

co r respond ing t o s t eps a l cn^^ t he b roken

l i n e s h o v m . . V e s h a l l s h o w t h a t t h e s e

p a r t s a r e s e p a r a t e l y s m a l l .

Let a positive £ be given. Choose 8 > 0 so small that

( 2 3 ) T h e p a r t i a l d e r i v a t i v e s a n d e x i s t a t a l l p o i n t s o f t h e d i s k

A o f r a d i u s h a b o u t a - < 0 , 0 a n d

( 2 4 ) F o r a n y < u , v > 6 A ,

|fj^(u,v) - fj^CO.O)! < e-lz and

IfjCu.v) - fgCO.O)] < £/2.
v ^ e c a n d o t h i s b e c a u s e t h e d e r i v a t i v e s e x i s t . i n a n e i g h b o r h o o d o f a a n d a r e

c o n t i n u o u s a t a b y h y p o t h e s i s .

Now suppose II < X, y > II < 6 , that is, < x, y > e A. We shall prove

|f(x,y) - f(x,0) - yf;(0,0)| < £|y|/2

(26) |f(x,0) - f(0,0) - xf]^(0,0)| < <£|x|/2.

Consider the function g defined on [0,y] (if y is negative, it will

be on [y,0] ) by

g ( t ) = f ( x , t ) .

F o r v a l u e s o f t i n t h i s i n t e r v a l , < x , t > 6 A , s o b y ( 2 3 ) g i s d i f f e r -

e n t i a b l e a t a l l p o i n t s o f t h i s i n t e r v a l a n d

g ' ( t ) = f ' (x , t ) .

(This is the definition of the partial derivative , f2•) Hence we can apply the
mean value theorem to g. There is a number v between 0 and y such that



. g(y) - g(0) = g'(v)(y - 0).
T h a t i s ,

f ( x , y ) - f ( x , 0 ) = y f ' ( x , v ) .

|f(x,y) - f(x,0) - yfj(0,0)| = ly|-|f*(x,v) - f'(0,0)|
< £ |y|/2.

The last step is by oondition using the fact that < x, v > C A . Thus

( 2 5 ) i s e s t a b l i s h e d .

The mean value theorem also applies to the function t •—> f(t,0) and

f(x,0) - f(0,0) = xfj^(u,0)
f o r s o m e u b e t w e e n 0 a n d x . T h e r e f o r e ,

|f(x,0) - f(0,0) - xf^(0,0)1 = |x|-|f[(u,0) - (0,0)1

< £|x|/2.

Again we used condition (24). This is (26).

F i n a l l y w e h a v e

|Dl < |f(x,y) - f(x,0) - yfj(0,0)| +
|f(x,0) - f(0,0) - xfi(0,0)I

< |{|x| + M) < e||<x, y>||.
The last inequality follows because |x| < Va + = II < y > II

similarly, |y| < || < x, y >||.

Thus we have proved

(\/< X, y > £ J?) II < X, y > - < 0, 0 > II < s =»
if(x,y) - f(0,0) - xf^(0,0) - yf'(0,0)1 < £|| < x, y > - < 0, 0 > ||.

Since we showed how to get the appropriate & given any positive £ , we have

p r o v e d t h a t f i s d i f f e r e n t i a b l e a t < 0 , 0 > a n d t h a t i t s d i f f e r e n t i a l i s a s

claimed. □



I f E i s a n o p e n s e t i n V a n d f : E — i s ' a d i f f e r e n t i a b l e f u n c t i o n ,

i t s d i f f e r e n t i a l i s a f u n c t i o n f r o m E t o V * ; i n c o o r d i n a t e s , i t i s a f u n c t i o n

f r o m E t o t h e s p a c e o f r o w v e c t o r s . N a t u r a l l y w e p r e f e r t h a t t h i s f u n c t i o n b e

c o n t i n u o u s . I t w i l l b e c o n t i n u o u s i f a n d o n l y i f , w h e n e x p r e s s e d i n c o o r d i n a t e s ,

i t s c o n p o n e n t s a r e c o n t i n u o u s . S i n c e t h e s e c o m p o n e n t s a r e j u s t t h e p a r t i a l

derivatives, we have the followihg important fact.

8 . 3 . 2 7 T h e o r e m . L e t f b e a r e a l - v a l u e d f u n c t i o n d e fi n e d o n a n o p e n s u b s e t E

of r". Ihe differential of f exists and is a continuous function from E to

(the set of n-long. row vectors) if and only if the partial derivatives

f^, f2, ..., f^ are defined and continuous on E.
P r o o f . I t f o l l o w s f r o m t h e p r e v i o u s t h e o r e m t h a t i f t h e p a r t i a l d e r i v a t i v e s a r e

defined and cont inuous on E, then f is d i fferent iable at each point of E

and i ts di fferent ial , being given by the part ial derivat ives, is cont inuous.

( N o t e h o w t h e f a c t t h a t E i s t e r s h e r e . T h e o r e m 8 . 3 . 2 2 w o u l d n o t b «

a p p l i c a b l e a t a b o u n d a r y p o i n t o f E . F o r t u n a t e l y , n o p o i n t o f E i s a b o u n d a r y

Conversely, we know (although we haven't given a proof in the general

case) that a t any po in t where f is d i f ferent iab le a l l i ts par t ia l der ivat ives

e x i s t a n d d f c o n s i s t s o f t h e s e p a r t i a l d e r i v a t i v e s a s s e m b l e d i n t o a r o w v e c t o r .

H e n c e , i f f d i f f e r e n t i a b l e a t e a c h p o i n t o f E , i t p a r t i a l d e r i v a t i v e s a r e

d e fi n e d o n a l l o f E . M o r e o v e r , i f d f i s c o n t i n u o u s , i t s c o m p o n e n t s m u s t b e

continuous; ie., the partial derivatives must be continiious. □

On page 8-18 we defined a function to be C if all of its partial derivatives

through order k exist and are continuous. We mentioned the fact that, as long

as the derivatives involved exist and are continuous, the order of differentiation

i s i m m a t e r i a l , a n d w e s h a l l n o w p r o v e a t h e o r e m t o t h i s e f f e c t . A s w e n o t e d

before, the theorem really concerns only two variables, so we state it only for



# 8 . 3 . 2 8 T h e o r e m . f - f u n c t i o n f r o m ^ o p e n s e t E i n B t £ K .

Suppose f̂ 2 is. defined and continuous ̂  ea6h point of E. Then f̂ ^ ̂
defined at each point of E and f^^ = f^g.

Proof. To prove thi?; we should pick an arbitrary point < a, b > of E and

show that fl^Ca.b) exists and equals f^^Cajb). There is, however, no real
loss of generality and the proof is easier to read, if we assiane a - b - 0;

so we make this assumption. Then the problem is to prove

f ; ( h , 0 ) - f ! ( 0 , 0 )( 2 9 ) l i m - 2 — 2 - f { 2 ( 0 , 0 )
h 0 ^

since the limit, if it exists, is fl*(0,0). We can write this

1 f ( h . k ) - f ( h . O )
h - > 0

lim lim 7^ (f(h,k) - f(h,0) - f(0,k) + f(0,0)) .
h ^ O k - » 0

Here the inner limit is known to exist because f is C^, but the outer limit
i s n o t y e t k n o w n t o e x i s t . H o w e v e r , w e a r e g i v e n t h a t

fl2(0.0)

l i m l i m
k - > 0 h - > 0

f*(0,k) - 4(0,0)

^ (f(h,k) . f(0,k) - f(h,0) +f(0,0))
w i t h b o t h l i m i t s e x i s t i n g . C o m p a r i n g , w e s e e t h a t o u r t w o e x p r e s s i o n s d i f f e r

o n l y i n t h e o r d e r i n w h i c h t h e l i m i t s a r e t a k e n . S o w e m u s t p r o v e t h a t i n t h i s

c a s e i t d o e s n ' t m a t t e r i n w h a t o r d e r t h e l i m i t s a r e t a k e n . I t i s . ^ s y t o g i v e

e x a m p l e s i n w h i c h a n i t e r a t e d l i m i t e x i s t s i n o n e o r d e r b u t n o t i n t h e o t h e r ,

o r i n w h i c h a n i t e r a t e d l i m i t e x i s t s i n e i t h e r o r d e r b u t t h e t w o l i m i t s a r e

d i f f e r e n t . S o t h e r e i s s o m e t h i n g n o n - t r i v i a l t o p r o v e h e r e . T h e p r o b l e m o f

r e v e r s i n g a n i t e r a t e d l i m i t i s t y p i c a l o f a n a l y s i s . M a n y i m p o r t a n t t h e o r e m s

s i m p l y a s s e r t t h a t u n d e r s u i t a b l e c i r c u m s t a n c e s a n i t e r a t e d l i m i t m a y b e r e v e r s e d .

F o r e x a m p l e , t h e o r e m 4 . 6 . 1 0 s a y s a p o w e r s e r i e s m a y b e d i f f e r e n t i a t e d t e r m - b y -



00
1

terra; this means that the limit associated with the infinite sum and the limit
associated with differentiation may, in the case of convergent power series, be #

t a k e n i n e i t h e r o r d e r .

T h e p r o o f i s a c c o m p l i s h e d b y a n i n g e n i o u s a p p l i c a t i o n o f t h e m e a n v a l u e >

t h e o r e m . S u p p o s e k 0 a n d p u t

g ( t ) - f ( t , k ) - f ( t , 0 ) .
( • w y

Granting that k is small enough so that everything l ies in 51, this is the

d i f f e r e n c e o f t w o f u n c t i o n s e a c h o f w h i c h i s d i f f e r e n t i a b l e f o r t n e a r 0

since it is given that f^ exists throughout S. Hence if |h| is small i 1

( 3 0 ) g ( h ) - g ( 0 ) - h g ' ( u h )
(mm,

f o r s o m e n u m b e r u b e t w e e n 0 a n d 1 . N o w

g'(t) - f^(t,k) . f^(t,0)
f o r a l l s m a l l t , s o

(31) g'(uh) = f{(uh,k) - f'(uh,0) - kf^'(uh,vk)
w h e r e v i s b e t w e e n 0 a n d 1 , b y a s e c o n d a p p l i c a t i o n o f t h e m e a n v a l u e \

theorem using the fact that f^g exists. Hence if |h| and |k| are small

enough bu t no t ze ro

(32) f(h,k) - f(h,0) - f(0,k) + f(0,0) = hkf'^(uh,vk)
since the left hand member is g(h) - g(0). The continuity of f^ shows that
this is nearly hkf^^(0,0) so the desired result follows easily.

The detailed argument is as follows. We must prove (29), that is

(V £ > 0)(3 6 > 0)(Vh) 0 < |h| < S =»
(33)

fmm,

Let £ > 0 be given. Here is the recipe for choosing 8. Since E

is open, we can find a disk centered at < 0, 0 > that lies in E. We know m



that is a continuous function, so we can choose a smaller disk A centered
a t < 0 , 0 > s o t h a t

|f^2(x,y) - (0,0)1 < ^/2
whenever < x, y > £ A. Let 8 be half the radius of A. Then if |x| < S

and |yl < 8, < X, y > e A.

Now we must prove an inequality, the last part of (33)j involving an

arbitrary real number h satisfying 0 < |h| < S. Let such an h be fixed.
For any real k satisfying 0 < [k| < 8, the function g is defined

for |t| < h and is differentiable. Hence (30) is valid for some uG (0,1).
Since the segment from <uh,0> to <uh,k> lies entirely in A and
t h e r e f o r e i n £ , a n d s i n c e e ^ d s t s a t a l l p o i n t s o f E , w e c a n a p p l y t h e

mean value theorem to f̂ , regarded as a function of its second argument alone,
and v/e obtain (31) where < uh, vk > is a point of A. Now tsy (3^)

|f''(uh,vk) - f{^(0,0)| < £/2.
We know this even though we don't know what u and v are; all we need is that

they are both between 0 and 1.

Using (32) divided through by hk, we have

11 if(h.k) - f(h.O) _ f(O.k) - f(0.0)l - fT;(0,0) < £/2

T h i s i n e q u a l i t y i s true for all values of k with 0 < |k| < 8. As k—>0,
the left member has a limit because fg exists. We have therefore

i (f|(h,0) - f^(0,0)) - fî (0,0)l < £/2 < £.
T h i s i s t h e i n e q u a l i t y w e s e t o u t t o p r o v e .

This proves that (33) and hence (29) ia true.□



8.3.33 Theorem. Suppose '£ ajn open set in a finite dimensional inner product

space V and f : E —> E i£ a differentiable function. Suppose I is an open

i n t e r v a l i n B a j i d g s I — > E i s d i f f e r e n t i a b l e . T h e n f • . { : I —

d i f f e r e n t i a b l e a n d i t s d e r i v a t i v e i s ^ i v e n b y

(foi5)'(t) = df(g(t))[Et'(t)].

(Remember, (?• (t) is a vector in V, df(g(t)) is in V*, and [ ] indicates
t h e a c t i o n o f a m e m b e r o f V * o n a n e l e m e n t o f V. )

Proof. We need only prove this for a fixed (but arbitrari ly chosen) value of t,

say t . For brev i ty 's sake we in t roduce v ~ . ' ( t ) and h - d f ( :^ ( t ) ) - d f (v ) .
0 0 0 0 0

S i n c e i s a c o l u m n v e c t o r a n d h i s a r o w v e c t o r , t h e y h a v e n o r m s .

F r o m t h e C a u c h y - S c h w a r z i n e q u a l i t y i t f o l l o w s t h a t

for any v G V. (To derive this formally, use 5.^.18.)

We want to prove that (fog)*(t ) = h[g*(t )]. This is the same as

s h o w i n g t h a t

f { g ( t ) ) + ( t - 1 ) h [ g ' ( t ) ]

is the best linear approximation of fog near t^. Hence v/e must estimate

, D = f(g(t)) - f(g{t^)) - (t - t^)h[g'(t^)].
We break D into two parts which give the errors due to approximating f and

r e s p e c t i v e l y .

D = f(g(t)) - f(g(t^)) - h[g(t) - g(t^)]

+ h[g(t) - g(tg) - (t - t^)g«(t^)] .

For t near t^ the first of these parts is much less than || g(t) - g(t^) ||
which is itself of the same order of magnitude as |t - t^|. We shall show
directly that the second part is much less than |t - t^]. Altogether we find
|D| < £|t - t^l if t is near enough to t^. Now for the details.

Let a positive £ be given. Because f is differentiable at v^, there
i s a p o s i t i v e s u c h t h a t



(\/v e V) II V - II < 6^

B e c a u s e g i s d i f f e r e n t i a b l e a t i t i s a l s o c o n t i n u o u s t h e r e , s o t h e r e i s

a positive 8 such that . |t - t^j <' S

( 3 8 ) I I g ( t ) - g ( t g ) I I < a n d

(39) II S(t) - g(t;) . (t - t^)g'(t^) II < It - tj

Now let t be any nmber satisî ng 11 • - | < 8 . Then

II g(t) - g(t„) II - II g(t) - g(t^) - (t - t^)g'(t„) + (t - t^)g'(t^) II
(W) < II g(t.) - g(t^) - (t - t^)g. (t^) II + |t - tj-l|g' (t„)||

< (£■+ II g'(to) fl) H - tj

Because (38) is true, we can replace v' 1?y g(t) in (37)- Remember that
= g(tg). With the aid of (W) the resviting inequality sin îlifies to

(̂ 1) lf(g(t))'- f(g(t̂ )) - h{g(t) - g(t̂ )] I < ||t - t̂ l
By (36) and then (39)'we have

I h[g(t) - g(t^) (t-t,)g'(t^)] |;'< ||hiH|g(t) - g(t^) - (t-t^)g'(t^)||.
: . : < f | t - t j .

Putting this together with (41) we have

|D| < e|t -1„|.

Thus we have proved

(V e > o)(3 S >0)(Vt) , [t - t^j < 8 =»
,|f(g(t)) - f(g(t^)) - (t . t^)h[g>(t^)]| < e|t - tj.

This is precisely the statement that (fog)*(t̂ ) = h[g*(t̂ )]. Since t̂  was
chosen arbitrarily, this completes the proof. □



When V is (or when coord inates have been in t roduced in to V) then

g : I — h a s c o m p o n e n t s g ^ , * * • # c o l u m n v e c t o r w i t h
components g^, g^, gV The differential of f is the row vector

jlV D^f • • • Df||

(fog)'(t) = (D^f)gi(t) + (D2f)g'(t) +. . . + (o^ng;^(t).
We have left out the arguments of the partial derivative functions D f̂. They
are all to be evaluated at g(t). This is the formula we guessed on page 8-31

It can be written in full id.thout arguments as follows

(f«g)' = ((V)°g)gi + ((D2f)og)g' + . . . ((D^f)og)g;,
bu t i s mos t common ly abb rev ia ted

(fog)' = (I\f)gi + (D2f)gJ + • • • + (Djf)gV
F o r m u l a s i n p a r t i a l d i f f e r e n t i a t i o n a r e o f t e n q u i t e l o n g i f w r i t t e n o u t i n f u l l

s o t h e y a r e o f t e n a b b r e v i a t e d . To u n d e r s t a n d t h e m y o u m u s t t h i n k a b o u t w h a t h a s

V t A A n f t n l ^ + . + . A r f -

1. What is the natural domain of the function given by

f ( x , y ) = ?

At what points is it differentiable? Same questions for g :

g ( x , y ) ^ - y ^ .

2 . S u p p o s e t h a t f : i s d i f f e r e n t i a b l e a t v w i t h d i f f e r e n t i a l h t h e r <
o

Let w be a fixed vector in V and consider the function g(t) - f(v^ + tw)
By calculation from the definitions without use of the chain rule, show

t h a t = h r w 1 .

S h o w t h a t t h e f u n c t i o n f e r i v e n b v

f ( x . v ^ =

has a derivative along every vector at < 0, 0 > but is not differentiable

a t t h a t n o i n t .



k. With the notations of Theorem 8.3.35 and assuming that f and g are C ,

der ive a formula for ( fog)** .

5 . L e t V b e a fi x e d v e c t o r fi e l d o n i e . , a f v i n c t i o n f r p m t o t h e

set o f two h igh co lumn vectors . I f f is a d i f ferent iab le funct ion

we can d i f fe rent ia te f a t any po in t < a , b > a long v (a ,b) . The resu l t

is df(a,b)[v(a,b)], a number. Hence df[v] denotes a function from

] R " t o B . A s s u m i n g v i s c o n t i n u o u s c h e c k t h a t

i s a l i n e a r f u n c t i o n f r o m C r t o C s a t i s f y i n g

(♦ ) T ( f - g ) - f - ( T g ) + g - ( T f ) .

(The products, represented by •, are to be taken pointwise.) A l inear

operator sat is fy ing th is ident i ty is ca l led a der ivat ion. Note that par t ia l

differentiation is a special case corresponding to a constant vector field.

(Which?) It is an interesting theorem that the only derivations from C®
t o a r e o f t h e k i n d j u s t c o n s t r u c t e d w h e r e v i s a v e c t o r fi e l d .

6 . C o n s i d e r t h e f u n c t i o n s f a n d g g i v e n b y

f ( x , y ) ^ e " s i n y

g(x,y) =

C o n s i d e r t h e i t e r a t e d l i m i t s

l i m l i m f ( x , y )
x - > o o y - > o o

l i m l i m f ( x , y )
y ->oo x -»a>

l i m l i m g ( x , y )
x ->a> y ->oo

l i m l i m g ( x , y ) .
y - > c o x - > a )

Exp la in wha t happens .

7 . P r o v e t h a t i f f s V — > B i s d i f f e r e n t i a b l e a t t h e p o i n t v 6 V , i t i s a l s o

c o n t i n u o u s a t v .



8.3.^2 Loibniz* notation. When we take Cartesian coordinates in a geometric

p l a n e P, w e a r e fi x i n g t w o f u n c t i o n s x a n d y f r o m P t o I I . T h e

coordinates of a point q € P are then x(q) and y(q). It is important

t o n o t e t h e d i f f e r e n c e b e t w e e n t h i s i n t e r p r e t a t i o n o f ' x * a n d ' y * a n d t h e
2 2

one you may be more famil iar with. An equation l ike x + 2y - 1 for

c u r v e i s o f t e n i n t e r p r e t e d a s r e f e r r i n g t o

( 4 3 ) { < x , y > : x ^ + 2 y 2 = 1 } ,
a set of points in IR .̂ In the new usage we should interpret it as

( 4 4 ) { q : x ( q ) ^ 2 y ( q ) ^ = 1 } »
a set of po ints in P. In (43) 'x* and 'y* are dummy or pat tern var iab les,

serving only to tell how to test whether a given ordered pair of numbers is in

the set or not . In the la t ter 'q* is a dummy whi le 'x* and 'y ' re fer to

specific functions defined geometrically in term of axes in P. When dummies
are used in a mathematical expression, you can always replace them by different

letters as long as no confusion of symbols is thereby introduced. For example,

{ < u, V > ! û  + 2v̂  = 1 }
refers to the same set as (43). On the other hand, if we write

{ q : u(q)̂  + 2v(q)̂  = 1 }
the p resumpt ion i s tha t ' u * and ' v * represen t func t ions f rom P to H

probably di fferent f rom x and y, so th is set is probably di fferent f rom the

one given by (44). To go even further to i l lustrate the distinction, note that

2 2^ < y . X > ; y + 2 x = 1 )

i s t h e s a m e a s ( 4 3 ) . b u t

« H l f ' P f t Y ' A n t . • T r f i n i

( a : v(a)^ + 2x(q)^ = 1

W e h a v e g e n e r a l l y u s e d ' x * , ' y * , ' z * , a n d ' t * a s d u m m i e s w h e n w e

d e f i n e f u n c t i o n s . T h u s w e m i e h t d e f i n e F : — > R b v



Here 'x* and »y* are dummies as we can see by noting that the formula

F(u,v) ^ + 2v^
h a s e x a c t l y t h e s a m e m e a n i n g . H o w e v e r , i f ' x * a n d ' y * a r e t h e n a m e s o f

f u n c t i o n s f r o m P t o B , t h e n

i s a f u n c t i o n f r o m P t o 3 R ; s p e c i fi c a l l y t h e f u n c t i o n

x(qr + 2y(q)\

(Here 'q* is the dummy.]

T h e d i s t i n c t i o n w e a r e m a k i n g h e r e i s o f t e n g l o s s e d o v e r, b u t y o u m u s t

m a k e i t i n o r d e r t o u n d e r s t a n d t h e e x t r e m e l y u s e f u l L e i b n i z n o t a t i o n f o r

p a r t i a l d e r i v a t i v e s .

S u p p o s e f ! P — > ] H i s a n y f u n c t i o n a n d x a n d y a r e t h e u s u a l c o o r d i

nate funct ions. Since a point q of P is completely determined when x(q)

and y(q) are known, there must ex ist a funct ion F : —> ]R such that

f (q ) = F(x (q) ,y (q) )

f o r a l l q c P. Th i s i s usua l l y abb rev ia ted f - F ( x , y ) . Assum ing F i s

d i f f e r e n t i a b l e , t h e n ~ d e n o t e s a n e w f u n c t i o n f r o m P t o 3 E g i v e n b y

|̂ (q) = (I\F)(x(q),y(q))
wh ich we may abbrev ia te

( a F ) ( x , y ) .

(This is not the only way the symbol — is used, but it is the commonest.)

S i m i l a r l y ,

g = (D2F)(x,y).
This is Leibniz* notation for the derivative. You are familiar with it,

of course, for functions of one variable. (If y - f(x), then ^ )
It is very commonly used in applications of mathematics. Often applications

are concerned with functions defined on space, like the temperature or the



p r e s s u r e a t a g i v e n p o i n t . . L e t s u c h a f u n c t i o n b e f a n d , i n t e r r a s o f s o m e

coo rd ina te f unc t i ons x , y, and z , say f = F (x , y, z ) . A l t hough the u l t ima te

ob jec t i ve may be to find F ( ie . , a method fo r comput ing f ) , i t i s f tha t

h a s a d i r e c t r e a l - w o r l d i n t e r p r e t a t i o n . S i m i l a r l y , t h e d e r i v a t i v e s o f F a r e

3 f S f 3 f
o n l y r u l e s f o r c o m p u t a t i o n , b u t a n d b e i n g f u n c t i o n s d e fi n e d o n

s p a c e , o f t e n h a v e a n i m p o r t a n t p h y s i c a l i n t e r p r e t a t i o n .

8.3.^ Change of coordinate systems. Suppose f is a function defined on

a p l a n e P a n d w e h a v e t w o d i f f e r e n t c o o r d i n a t e s y s t e m s o n P. T h e n f h a s

partial derivatives in both systems and it is important to know how they are

A s a fi r s t e x a m p l e , s u p p o s e w e h a v e a l i n e a r c o o r d i n a t e s y s t e m w i t h

coordinate functions x and y and a second linear coordinate system with

c o o r d i n a t e f u n c t i o n s u a n d v. W e a s s u m e t h a t b o t h s y s t e m s h a v e t h e s a m e

o r i g i n . T h e n w e c a n e x p r e s s x a n d y l i n e a r l y i n t e r m s o f u a n d v . T o

b e d e fi n i t e , s a y

X = 2 u + V

y = 3u + V.

(These are equations connecting functions on P; for example, x(q) = 2u(q) +v(q).)
S u p p o s e W 8 k n o w a n d H o w c a n w e fi n d a n d T

< ' y d u a v

There is a function F: such that f - F(x,y) and a function

G : s u c h t h a t f = G ( u , v ) . T h e r e f o r e

( ^ ) G ( u , v ) = F ( 2 u + V , 3 u + v ) .

Although this is really a relation between functions defined on P, we can
th ink o f i t as a fo rmu la fo r Q in te rms o f F. Th ink ing o f v as fixed

we can d i f fe ren t ia te us ing the cha in ru le to find :

Gj(u,v) = F (̂2u + V, 3u + v)«2 + F2(2u + v, 3u + v)'3
= 2F (̂x,y) + 3F'(x,y)



I n t h e L e i b n i z n o t a t i o n t h i s b e c o m e s

d u d x *

I f we di fferent iate (44) wi th respect to v keeping u fixed we get

G^Cujv) ̂  F (̂2u 4- V, 3ii + v) + F2(2u + v, 3u + v)
w h i c h b e c o m e s

Mow let us do a more complicated case. Assume x and y form a Cartesian

coordinate system (ie., the axes are perpendicular and their scales are the same)

We introduce polar coordinates p and © into P taking the positive x-axis
as the initial ray as usual. Then p and 0 are new functions from P to
]R. (Actually © isn't defined at the origin and there is some ambiguity else

where. but i t doesn't matter for the present considerations.) And x and y

are related to p and O by

p sin 8

f =F(pcos©, osin^)

^ ~ F-[(yOcos ps±nd) QosO + poos 6̂  p sin G) sin (9
- ^ cos © + sin S .

S i m i l a r l y ,

I f " I f ■ ' I f
W e c a n e a s i l y g e n e r a l i z e t h e s e e x a m p l e s . S u p p o s e u a n d v a r e a n y t w o

f u n c t i o n s o n P a n d t h a t x a n d y c a n b e e x p r e s s e d i n t e r m s o f u a n d v .

X = <jf)(u,v)
y - ^ ( u , v )



where <jp and Y are differentiable functions. Then

f - F((p(u,v),

II = Fi(̂ (u,v), '\//(u,v))(f̂ (u,v) + F̂ (<p(u,v), y(u,v))T/('(u,v)
d x a u a y 3 u •

S i m i l a r l y ,

| i . 51.as + ai. i ia v a x d v a y a v •

Note how the Leibniz notation obviates the necessity of any notation
at all for the intermediate functions F, <p, and Y-

This new form of the chain rule extends immediately to higher dimensions.

If, for example, f can be expressed differentiably in terms of x, y, and z
and X, y, and z can in turn be expressed differentiably in terms of u,
V, and w, then f can be expressed in terms of u, v, and w and

9 u a x a u d y 9 u a z a u

a n d t h e r e a r e s i m i l a r f o r m u l a s f o r a n d .
d v a w

Ix ̂  function on space, we can start over again and differen
t i a t e i t . We o b t a i n t h e s e c o n d o r d e r n a r t l a l d f t - r l v a + . - ^ w o c

T h e s e a r e u s u a l l y a b b r e v i a t e d

h (H) •

According to Theorem 8.3.28 we will usually have

i f f - ^
a v a x a x ^ v

Calculating second order partial derivatives in one system of coordinates
in terms of the partial derivatives in another is a problem of frequent occurrence
that requires careful attention. We illustrate by showing that, for anv



8-5'^

f u n c t i o n u o n P , t h e L a p l a c i a n

e x p r e s s e d i n p o l a r c o o r d i n a t e s i s

d ' u ^ 1 a ' - u 1 a u

Formulas (^7) and (^) are val id for any smooth function f on P. In

^ ^ 1 ^ s i n ©9 / 0 \ h x l 3 y 9 x

^ ^ c o s © + s i n &\ ^ y l 3 x 3 y 3 y 2

Now we can differentiate (49)» Remember that cos 9 = ~ sin 0 - 0,
a p d p

since © is treated as a constant when calculating ̂  .
- i . / i H c s © + ~ s i n ©- p p U j - - ^

cos^O +2^^sin& cos0 + ^%sin^©
3 x 3 x a y a y 2

Formula (48) can be written

^ a x + * a y

a e ^ a © \ 3 x ; ' a e i a

+ 3£ /aui +de dyl ^ * 3© (ay

|ji . yl.y^ + X .a5i3 x y ' S F ^ * a y a x



»

through by p and add (50). Remember x ~ p cos i

^ ^ 1
d/o2 />2 3e2 I? - H't

Transposing the last term and using (49) we get

i i a =

d f > ^ p 2 j g 2 3 ^ 2 3 y 2
A f u n c t i o n u i s c a l l e d h a r m o n i c i f i t s a t i s fi e s L a p l a c e ' s e q u a t i o n

& " 0 '
where x and y are Cartesian coordinate functions on the plane. Harmonic

functions on three space are those that satisfy the three dimensional Laplace

e q u a t i o n

& ♦ $ * 6
w h e r e x , y , a n d z a r e t h r e e - d i m e n s i o n a l C a r t e s i a n c o o r d i n a t e f u n c t i o n s .

Many important physical functions are harmonic in three-space, for example,

g r a v i t a t i o n a l o r e l e c t r i c a l p o t e n t i a l s i n e m p t y s p a c e . A g r e a t d e a l h a s

b e e n d i s c o v e r e d a b o u t s o l u t i o n s o f L a p l a c e ' s e q u a t i o n .

L e t u s d e t e r m i n e a l l h a r m o n i c f u n c t i o n s o n t h e p l a n e t h a t d e p e n d o n l y o n

t h e d i s t a n c e f r o m a fi x e d p o i n t . W e n a t u r a l l y t a k e t h a t p o i n t a s t h e p o l e

o f a p o l a r c o o r d i n a t e s y s t e m . I f u i s t h e f u n c t i o n , t h e L a p l a c e e q u a t i o n i s

^ = ° -af>2 y£)2 ae2 ap
We are ask ing that u be a funct ion o f /O a lone, tha t is

Then the part ial der ivat ives of u with respect to & are zero, and those

with respect to p are given hy the ordinary derivatives of H. Our equation

+7H'(p) = 0.



T h i s i s a s e c o n d o r d e r l i n e a r e q u a t i o n . I t m a y b e r e g a r d e d t e m p o r a r i l y a s a

first order linear equation for H* and solved by the methods of §3.^- We

w h e r e a a n d b a r e c o n s t a n t s . N o t e t h a t o n l y t h e c o n s t a n t s o l u t i o n s a r e

s m o o t h a t t h e p o l e .

1. Suppose f - u*^ + 3uv - V where u and v can be expressed differ en tiably
. . ^ ^ ^ , a f 9 f a ^ fi n t e r m s o f s o m e f u n c t i o n s x a n d y . F i n d 5 - - » —3x ' By* ' 3x3y ^

( i n t e r m s o f u , v , e t c . ) .

2 . I f g - H ( c o s y, s i n x ) fi n d - I f
3 . G i v e n t h a t

i f . Suppose t ha t f : —> B i s a d i f f e ren t i ab le f unc t i on and t ha t x and

y a r e t h e u s u a l c o o r d i n a t e f u n c t i o n s o n S h o w t h a t

d f = d x + d y .

5. Suppose that x, y and u, v are two different Cartesian coordinate

systems in the plane with the same scale. If f is a C -̂function on
the plane (this means f can be expressed in terms of x and y with a

C^-function from to R), show that

a^f ^ d^f 2?f ^ ^

T h e t w o c o o r d i n a t e s y s t e m s n e e d n o t h a v e t h e s a m e o r i g i n . N o t e t h a t i f



this were not true, the Laplacian of a function would not often be of any

physical s ignificance. Actual ly, except for constant mul t ip les, the

Laplacian is the only second order differential operator with this

i n v a r i a n c e p r o p e r t y . T h a t f a c t e x p l a i n s i t s u b i q u i t o u s c h a r a c t e r .

6. Find all solutions of Laplace's equation in the plane that can be written

in the form H(p) cos n© or K(p) sin n© where n is an integer.
(After finding a second order ordinary d i fferent ia l equat ion for H, t ry

H(^) ' p .̂)
T h e s e s o l u t i o n s a r e e x t r e m e l y i m p o r t a n t b e c a u s e L a p l a c e ' s e q u a t i o n i s

l i n e a r . T h e s e t o f a l l s o l u t i o n s i s t h e r e f o r e a l i n e a r s u b s p a c e o f t h e s e t

o f - f u n c t i o n s . T h i s s u b s p a c e i s i n fi n i t e d i m e n s i o n a l , s o i t d o e s n ' t h a v e

a basis in the sense of 2.4.1, but the solutions found in this exercise span

the se t o f so l u t i ons i n t he sense o f eve ry so lu t i on o f Lap lace ' s

equation can be represented as a limit (in a suitable sense) of finite linear

c o m b i n a t i o n s o f t h e s e s i m p l e s o l u t i o n s . T h e t h e o r y o f F o u r i e r s e r i e s fi g u r e s

m o s t i m p o r t a n t l y i n r e p r e s e n t i n g t h e s o l u t i o n s . U s e F o u r i e r s e r i e s t o s o l v e

t h e f o l l o w i n e n r o b l e m .

Find a continuous functions f from the closed unit disk in the plane

t o B t h a t s a t i s fi e s L a p l a c e ' s e q u a t i o n i n t h e o p e n u n i t d i s k a n d h a s

preassigned (continuo\is) values on the unit circle. Don't worry about

c o n v e r g e n c e q u e s t i o n s . J u s t a s s u m e t h a t t h e s o l u t i o n i s a c o n v e r g e n t

f i l i i n n - f + > ! « c r t T 1 1 + . ^ n r * e f l V i f t V A .



8 . 4 T a y l o r ' s s e r i e s .

In chapter 4 we saw that elementary functions of one variable can usually

b e e x p a n d e d i n a p o w e r s e r i e s . T h e f a c t s a r e s i m i l a r f o r f u n c t i o n s o f s e v e r a l

We shall shoir that the seoond dogreo terms In th« Taylor's series for a

function at a critical point detemine. In most eases, whether the critical

point is a maxinum, a mininnim, or a saddle point.

8.4.1 Polynomial functions. Let P be a plane. Choose a Cartesian coordinate

system for it and let x and y be the coordinate functions. Any function
f r o m P t o ] R o f t h e f o r m

M + ^x + yy + 5 x " + + . . . + c r y "

IS called a Eolynonilal function on p. The degree of this polynomial function
is the highest total degree of non-zero terms occurring (after everything has
been properly collected and simplified, of course). For example, x^ has

degree 12. The degree of x(xy - y^) + xy^ is three.
There are two useful ways to arrange the terras of a polynomial. In one we

write first the term of degree zero (ie., the constant term), then the terms of

degree one, then those of degree two, etc. Then our function is represented as
the sum of a constant, a linear form, a quadratic form, a cubic form, etc.
(The word »»form" is often used to describe a polynomial function that is homo

geneous, that is all the terms are of the same degree.) For example,

2 + 3x + 2y + - y^ + 3x^y . y3.
c o n s t a n t l i n e a r q u a d r a t i c c u b i c

This representation is often convenient when we want to consider points near

the origin. At these point x and y are both small, so the quadratic terms

are generally smaller than the linear terms, the cubic terms are generally

smaller than the quadratic terms, etc.



Sometimes it is better to write (or imagine) the terras in a two-dimensional

2 + 3 x + X + 0

2 y + 0 + 3 x y

- + 0

In theoretical work with a "general" polynomial g, we usually write i t

S o m e t i m e s i t i s b e t t e r t o p u t / 3 p , q " P ' T h e n

T h e a d v a n t a g e o f t h i s w a y o f w r i t i n g i t b e c o m e s a p p a r e n t w h e n w e d i f f e r e n t i a t e .

I t " / 3 p , q f t
w h e r e n o w t h e s u m i n v o l v e s o n l y v a l u e s o f p > 1 . T h e g e n e r a l d e r i v a t i v e i s

Z—J / P.q (P-f)'

w h e r e t h e s u m i s n o w r e s t r i c t e d t o i n d i c e s p > r , q > s .

T h e v a l u e o f t h i s d e r i v a t i v e a t t h e o r i g i n i s e a s y t o g e t . S i n c e x a n d

y vanish at the origin, only the constant term (corresponding to p - r, q - s)

i s n o t z e r o , s o

Since we are using the Leibniz notation, the argument of a partial derivative is

a point. Hence we have denoted the origin here by 0. In sums involving partial

derivatives of various orders, it is understood that the zero-th derivative is

t h e f u n c t i o n i t s e l f .



Frorri this expression it is clear that there is a polynomial of degree n

(at most) whose partial derivatives at the origin of all orders up to n have

p r e s c r i b e d v a l u e s . F u r t h e r m o r e , t h i s p o l y n o m i a l i s u n i q u e .

Eve ry th ing we havQ done he re has an immed ia te and ev iden t gene ra l i za t i on

t o h i g h e r d i m e n s i o n s .

6 . 4 . 2 Ta y l o r p o l y n o m i a l s . L e t f b e a r e a l v a l u e d f u n c t i o n d e fi n e d o n a n e i g h

b o r h o o d o f t h e o r i g i n a n d d i f f e r e n t i a b l e t h e r e . T h e n t h e r e i s a p o l y n o m i a l g

o f d e - : r e e a t m o s t o n e t h a t a p p r o x i m a t e s f w e l l a t 0 . T h a t m e a n s I f - g l

is small relative to \/x + y . More precisely, for a point v near 0,

| f ( v ) - g ( v ) | i » nmeh l ess t han Vx i y r - f y ( y ) I n f u l l d a t a i l

(Vt > o)(3 s > o)(Vv) iiv||<s

lf(v) - g(v)| < e||vii.

T h i s i s , o f c o u r s e , j u s t t h e d e fi n i t i o n o f d i f f e r e n t i a b i l i t y .

W e k n o w w h a t t h e p o l y n o m i a l g i s . I t i s

i(0) + (0) X + ^(0) y.
(This is just formula 8.3(13) converted to Leibniz notation with a = b - 0.)

' ^ e c a n d e s c r i b e i t a s f o l l o w s : g i s t h e p o l y n o m i a l o f d e g r e e a t m o s t o n e t h a t

h a s t h e s a m e v a l u e a s f a n d t h e s a m e fi r s t p a r t i a l d e r i v a t i v e s a s f a t t h e

o r i g i n .

To get an even better approximation of f we should try a polynomial of

higher degree. There is a unique polynomial g of degree two at most that has

the same v^lue and partial derivatives as f at the origin through partial

d e r i v a t i v e s o f o r d e r t w o ; t h a t i s

£^(0) = 3xPay1

for p q < 2. We require, of course, that f has second order part ia l

derivatives. In fact we shall assume that f is C^. With this hypothesis
we shall orove that If - el is small relative to + v^t that is



(V£ >0)(3 s>0)(\/v) llvll <h

|f(v) , g(v)l < ||v||^.
If f is a function of (pla?s C** near the origin,' the polynomial g

of degree most k such that (3) is true for p + q < k is called the

k - t h Ta y l o r p o l y n o m i a l f o r f a t t h e o r i g i n .

We can also define the Taylor polynomials for f at other points. The

k - t h Ta y l o r p o l y n o m i a l f o r f a t i s t h e u n i q u e p o l y n o m i a l g o f d e c r e e

a t m o s t k s u c h t h a t

for p + q < k. It can be witten exiplicitly as a s\anf. If the coordinates

of V are a and b (ie., x(v ) - a, y(v ) - b), then

^ 3 x P 3 v ' ' ° p ' q ' '

t h e s u m b e i n g t a k e n o v e r a l l n o n - n e g a t i v e p , q w i t h p + q < k .

This is a generalization of the one dimensional case and extends immediately

to more dimensions. For example, in dimension three the k-th Taylor pol^momial

f o r a f u n c t i o n f a t v ^ i s

y a p^^^f, . ix=aiP

the sum being taken over all non-negative p» q» r with p + q + r < k. Here

a , b , and c a re the coord :m a t e s o f v ^ .

S x a r o l s o s .

1. Find th« saeond Taylor polyhondal for th0 fol lowing ^otiops at tho

p o i n t s i n d i o a t o d .

(a) X + 7? + xy at < 0, 0 >. (o) oxp (x + 3jy) at < 0, 0 >
(b) tan (x + y) at < 0, 1 > (4) w sin (x - y) a1^ < p, 0 >



8 . 4 . 3 Ta y l o r ' s f o r m u l a w i t h r e m a i n d e r . J u s t a s i n t h e c a s e o f o n e v a r i a b l e

t h e c r u c i a l s t e p i n s h o w i n g t h a t a f u n c t i o n i s a c t u a l l y a p p r o x i m a t e d b y i t s

Ta y l o r p o l y n o ^ i i a l s i s t o s h o w t h a t t h e e r r o r c a n b e w r i t t e n i n t e r m s o f

h i g h e r o r d e r d e r i v a t i v e s .

As is frequently the case, the results we want are easier to state and

d i s c u s s i n t e r m s o f t h e L e i b n i z n o t a t i o n b u t e a s i e r t o p r o v e i n t e r m s o f t h e

F , . . . n o t a t i o n .

T h e o r e i n . L e t G ^ ^ o p e n s e t ^ a n d ^ F : G — > ] R ^ a f u n c t i o n o f
O

class O'', Suppose < a, b > and < c^ d > are two points of G such that

t h e s e - ^ m e n t 3 . j o i n i n g t h e m l i e s w h o l l y i n G . T h e n t h e r e i s a p o i n t < r , s >

o n 3 s u c h t h a t

F(c,d) -= F(a,b) + (c-a)F'(a,b) + (d-b)F'(a,b)

|,(o-a)̂ F̂ (r,s) + (c-a)(d-b)F{J(r,s) + |, (d-b)̂ F*̂ (r,s).
Proof. For brevity let h-=c-a, k=d-b. Define a function cjp of one

v a r i a b l e b y

<p(t) == F(a + th, b + tk)

T h e n q 9 i s d e fi n e d a t l e a s t f o r 0 < t < 1 a n d

<p*(t) = hF (̂a+th, b+tk) + kF^Ca+th, b+tk)

(p"(t) - ĥ F̂ (a+th, b+tk) + 2hkF{|(a+th, b+tk) + k̂ F'|(a+th, b+tk).
Accord in t^ to the ex tended theorem o f mean va lue

<p(i) = 9(0) + cff{o) +
where ^ is some number between 0 and 1. Using our formulas for cp and its
derivatives and putting r-=a+^h, s-b + |k, the result is (4). Note

that < r, s > is on the segment joining < a, b > to < q, d >. □



For r ^ fe rwce purpos^a s ta te w i thou t p roo f tho gwra l i | » t i on o f th^s

t h e o r e m t o a r b i t r a r y d i m e n s i o n .

8.4.5 The^rm. G be an open set in SSd let F t G —»lt be ^ function

2 t S t T O O s e a = < a ^ , a g . > a n d c = <

are two points of G such that the segment S joining them liey whylly in G.
T h e n t h e r e i s a p o i n t r « i ^ s u c h t h a t

t

F(c) = F(a) + ̂  (Oĵ-â)Fĵ(a)
i » l

1 = 1 j = i

The theory extends as well to higher degree Taylor polynomials. If

I p o f c l a s s t h e f u n c t i o n < = p o f t h e p r o o f i s a n d t h e e * t e n 4 e 4 t h e o i ? # m

of m^ value tell^ us that

( 6 ) q P d ) = < f ( o ) + < p ' ( o ) + + . . . + S ) -

where ^ is som^ niimber between 0 and 1.

We can calculate the derivatives of <p as we did before, but the notation

soon becomes awkward. So we introduce the differentiat ion operators and

T h e n w e h a v e

<f'(t) = hD F̂ + kD F̂ - (hUĵ  + kD2)F

<jP"(t) = ĥ£̂F + 2hkQj_D2F + k̂D̂F = (h£̂  +
and in genera^ l

Cp̂^̂(t) = (hDĵ  + kDj)̂?
where all the derivatives are to be evaluated at < a + th, b + tk >. Because

the operators and Dg commute, that is, (as long as the
function F has continuous derivatives), we can treat expressions l ike

(hDj^ + as if they were ordinary polynomials. Putting th^se values
into (6) we obtain



F(o,d) = F(a,b) + hF (̂a,b) + kF'(̂ ,b)
k 2 ^ 2+ J, F'Ma.b) + hlcF';(a,b) + F'i(a.b)

+ i ((hDĵ  + kD3)PF)(a+|h, b+ 5k),
Th is 1» va l i d fo r any fnne t lon F o f c lass p rov ided tho l i ne segmen t

J o i n i n g < a , b > t o < c , d > = < a + h , b + k > l i e s I n t h « d o m a i n o f F .

Formu3.a (7) is called Taylor's fornulg with ramainder. There Is^ of

p o u r s e , a s i m i l a r f o r m u l a f o r fi i n e t i o n s o f m o r e v a r i a b l e s .

The number i occurring in (7) depends on a, b, c, and d. Only rarely

is there any reasonable way to compute ^ . Hence we usuall^c pnly estimate
the last terra of (7)

Suppose th i s l as t te rm i s expanded as a sum.

^ IT b + Ik)
Since we are assuming that the p-th order derivatives of P are continuous,

all the derivatives appearing here will have values rather olone to their

values at < a, b > provided h and k are small, no matter what ? Is.

We shall use this argument to Justify the claim made at the top of page

3.64 concerning the approximation of a function its second Taylor polynomial.

: ' i . - s e c o n d T a v l o r D o l v n o m i a l f o r F a t < a . b > e v a l u a t e d a t < c . d >

P(a,b) + (c-a)F*(a,b) + (d-b)Fl(a,b)

+ i (e-a)2F;;(a.b) + (c-a)(d-b)F;'(a,b) + |, (d-b)2F̂ |(a.b).
differs from the right side of (4) only in that the secpnd order der^.vatives

■a T i n r l i f f « r e n t . n l a e a s . T h e d i f f e r a n t s f t w a w a n t t o e s t i m a t e i s



B = |h2(rJi{i-,8) - F'iU.b)) +hk(PiJ(r,8) - Fi-U.b))
+ |k2(F««(r,a) - F (̂«,b)).

jiven £ > 0, we can choose a positive 5 so small thit the disk ^ o"^

r a d i u s & a b o u t < a , bb > l i e s w h o l l y i n J a n d

|F;'.(u,V) - F;'(a,b;| < <S
for i, j - 1, 2 and any choice of < u, v > in A.

N o w i f < c , d > t A , t h e l i n e s e g m e n t f r o m < a , b t o c , d : • l i e s

in G and < r, s > lies in 3. Hence (9) is applicable to eac;-! of the '.er.r.s

in (8) and we get

|B| < T + |hk|£ + I k^£
< fc(h^ + k"^) = £||< e, d a, b >11'̂  .

(The penultimate step because )hk| < (ĥ  + k̂ )/2.)
To get this inequality to look like our claim on pa^e 8-64 we switch back

to Le ibn iz no ta t i on . Suppose f • F (x ,y ) and i s a oo in t v r i t h coo rd ina tes

a a n d b . L e t ^ b e t h e s e c o n d T a y l o r p o l y n o m i a l f o r f a t v . F i n a l l y

a k e c - x ( v ) , d - y ( v ) . T h e n f ( v ) - ^ ( v ) a n d

fCv) - g (v ) < £ | Iv - V

provided 11 v - v^ll < 8 .

8 .4 .10 T*y lor*a aer ias. I f F ia m funct ion of c lass C , then at any po int

F will have Taylor polynomials of every degree and we might reasonably hope that

these polynomials will converge to F. We are led, therefore, to consider the

d o u b l e p o w e r s e r i e s

£73^

This series is known as the Taylor's series for F ^ < a, b >. As we have

mentioned in chapter 4, even in the case of functions of one variable, the



Taylor*s series of a function n««d not converge; and even If It does converge,

it need not converge to F(x,y). However, for the functions oonmonly encountered,

it will converge to F(x,y) at least for snu^ values of |x«a| and ly-b|.

The convergence will be absolute and various formal manipulations of series,

such as term-by-term differentiation, will be valid. Just as in the case of one

S^ce a oonvergent double (or trijae or higher) power series will also make

sense for complex values of the variables, Taylor*s series lead naturally to

the theory of functions of several cozaplex variables, one of the most active

a r e a s o f m a t h e m a t i c a l r e s e a r c h t o d a y.

W h e n w e w a n t t o fi n d t h e Ta y l o r ' s s e r i e s f o r a f u n c t i o n o f s e v e r a l v a r i a b l e s

it is often easier to get it by formal manipulations than by calculating deriva

t i v e s . A n e x a m p l e w i l l m a k e t h e i d e a s c l e a r .

Find the Taylor's series for log(cos x + sin y) through terms of degree

three at < 0, 0 >. (This is the same as the third Taylor polynomial at < 0, 0 >.)

' v i e k n o w t h a t

cos X - 1 - 2 + terms of degree > k

s i n y ~ y - t e r m s o f d e g r e e > 5

log (1 + z) - 2- | + ~ + terms of degree > 4.
2 3

(These are just one variable Taylor expansions.) So put z ~ 7 " 2 ~ 6 ̂  terms
o f d e g i » e e > i n t h e l a s t o f t h e s e s e r i e s . S i n c e

2 2 2z ~ y - X y + t e r m s o f d e g r e e > 4

a n d = y ^ + t e r m s o f d e g r e e > 4

log (cos X + sin y) = log (1 + y - | | + • ♦ •)

-y-i- f-
+ te rms o f degree > ^

+ terms of degree > 4.



B e c a u s e w e r e p l a c e d z b y a s e r i e s t h a t b e ; 5 i n s w i t h fi r s t d e p ^ r e e t e r m s

(ie., the constant term is zero), the successive powers of z begin with terms

o f h i g h e r a n d h i g h e r d e g r e e i n x a n d y . Te r r a s o f d e g r e e a t l e a s t f o u r i n z

p r o d u c e o n l y t e r m s o f d e g r e e a t l e a s t f o u r i n x a n d y . H e n c e t h e y m a y b e

n e g l e c t e d i f o u r g o a l i s o n l y t o fi n d t h e t e r m s o f d e g r e e t h r e e o r l e s s .

Ta y l o r p o l y n o m i a l s a r e o f t e n u s e f u l i n p r a c t i c a l c o m p u t a t i o n . W h e n t h e y

a re f ound by f o rma l ,man ipu la t i ons , as above , one ge t s no easy way t o es t ima te .

t h e e r r o r , h o w e v e r .

B x o r o l s e s .

1. Using the method of formal power series manipulation, find the third degree

Ta y l o r p o l y n o m i a l f o r t h e f o l l o w i n g f u n c t i o n s a t < 0 , 0 > o r < 0 , 0 , 0 > .

(a) oosh (x - y + xy)

(b) arcsin (x + y - x»)

(c) 8i^ (x '¥ y)
cos (x - y)

(d) log (x + cos y)

(e) exp (xy - sin z)

( l + x ) y

( g ) A
exp (>/l "»• X + ty ) dt

piotJL1 -

2. In 1(h), for what values of x and y would you expect the Taylor series

t o c o n v e r g e T

3. The equation - 5o(x^ + 5^* - 1 has the root x = 1 for =0.
There is a C*® function f of two variables such that x = f(o ,̂y3) is
a root of the above equation for any small cy and p , and such that

f(0,0) =1. Find the Taylor polynomial of degree two for f at < 0, 0 >.

(Try the method of undetermined coefficients. Compare ^.6.31. You need not

prove that the series converges.)

4 . S u p p o s e F I s a p o l y n o m i a l f u n c t i o n o f d e g r e e a t m o s t t h r e e . S h o w t h a t

in formula (7), p. 8-67, with p = 2 you can always take % =1/3-



8.4.11 Analysis of orltleal points. In §8.2 (p. 8-20 ff) wo lookod at the

p r o b l e m o f fi n d i n g t h e m a x i m u m a n d n i i n i n w r a o f a f u n c t i o n o f s e v e r a l v a r i a b l e s .

We showed that a local maximum or minimum of a function F can occur only at

(a) a cr i t ical point , that is , a point where al l the first order part ia l

d e r i v a t i v e s o f F v a n i s h , o r

( d ; a b o u n d a r y p o i n t o f t h e d o m a i n c o n s i d e r e d , o r

(c) a point at which F is non-dl fferent iable.

Ustfally we deal with everywhere differentiable functions, so case (c) does not
o f t e n a r i s e .

E v e n i n o n e d i m e n s i o n a c r i t i c a l p o i n t n e e d n o t b e e i t h e r a l o c a l m a x i m u m

o r a l o c a l m i n i m u m . F o r e x a m p l epie, x^ ha s a c r i t i c a l p o i n t a t 0 , b u t i t i s

n e i t h e r a l o c a l m a x i m u m p o i n t n o r a l o c a l m i n i m u m p o i n t f o r " x r . O n e t e s t f o r

t h e e x i s t e n c e o f a l o c a l e x t r e m e v a l u e i n o n e d i m e n s i o n i s t o e x a m i n e t h e s e c o n d

d e r i v a t i v e . S i q i p o s e a i s a c r i t i c a l p o i n t o f F ( l o . , F * ( a ) = 0 ) . I f

f"(a) > 0, then a is a strict local minimum point, that Is, F(a) < F(x)
f o r a l l X n e a r a b u t d i f f e r e n t f r o m a . I f F * ( a ) < 0 , t h e n a I s a s t r i c t

local maximum point. If F"(a) - 0, the test falls; we cannot decide on the

basis of th^s Inforaatlon alone whether F has a local extreme value. We

shall develop a similar test for functions of several variables using the second

o r d e r p a r t i a l d e r i v a t i v e s a t a c r i t i c a l p o i n t .

F i r s t , l e t u s l o o k a t t h e o n e d i m e n s i o n a l c a s e f r o m t h e p o i n t o f v i e w o f

T a y l o r ' s s e r i e s . E i c p a n d F a t a c r i t i c a l p o i n t a .

?(a +h) = F(«) +|ĥ F"(«) + ••• .
(The l inear term is omitted because F*(a) = 0.) If F"(a) > 0, the term

I ĥ F*(a) will be positive for all values of h except 0. For small values
o f h t h i s t e r r a , a l t h o u g h s m a l l , w i l l s t i l l b e l a r g e r t h a n t h e h i g h e r d e g r e e

terms omitted, since the latter all have the factor h^. Hence

F(a + h) > F(a)

for all small but non-aero h (ie., |h| small) and a is a strict local adnlmum



point for F. Similarly, if F"(a) < 0, a will b« a strict local maximi^ia point.
If f"(a) = 0, then the second degree terms do not control the lo9al behavior of

F a n d t h e t e s t f a i l s .

Now suppose F is a function of two variables with a critical point <ft

< a, b >. The Taylor*s series for F at < a, b > begins

F(a + h, b + k) = F(a,b) +

where the derivatives are all to be evaluated at < a, b >. (The linear ten^

are omitted because F^̂ Ca.b) = FjU^b) =0.) Because all subsequent terms in
the series involve h and k to at least degree three, we expect the var^tatlo?!

of f near < a, b > to be essentially controlled hy the second degree term#.

Omitting the factor l/2, these terns are a quadratic form in h and k called

the Hess ian fo rm o f F a t < a , b > . The behav io r o f F nea r < a , b i s

in most oases determined by the Hessian form. We shall show that

(a) If the Hessian form of F at < a, b > is positive definite, P has
a s t r i c t l o c a l m i n i m u m a t < a , b > .

(b) If the Hessian form is negative definite, F has a strict local
max imum a t < a , b > .

(c) If the Hessian form takes both positive and negative values, then
< a, b > is neither a local maximum or a local minimum, but some kind

o f s a d d l e p o i n t .

There remains the possibility that the Hessian form is send-definite, but not

d e fi n i t e . I n t h i s c a s e t h e t e s t f a i l s .

These conclusions are equally valid in higher dimensions. The qi^drat^p

terms in the Taylor series for F at a cri t ical point, again leaving out the

factor 1/2, constitute the Hessian form of F. Its matrix is

' i i
t

1̂2

F' i ^22

r ; a • • • a
ipl. derivatives being evali iated at the crit ical point. This matrix is known

as the Hessian matrix. Assuming F is C^, it is symmetric.



Although our dlscuasion Involvad refer«no9 to terns In the Taylor's series
for F. of degrees higher than two and henoe to derivatives of P of orders

higher than two, we can prove the statements above on the hypothesis that F is

merely C .̂

^ 5 , 4 . 1 2 T h e o r e m . L e t E a n o p e n s e t i n B a n d l e t F m b e a C " -

S i g s E O s e a i s a c r i t i c a l p o i n t f o r F a n d t h a t t h e H e s s i a n f o r a

f o r F a t a i s H . T h e n

(a) ^ H is positive definite, a is a striot loeal ainimim point for F.

(b ) I f H i s nega t i ve defin i t e , a i s a s t r i c t l o ca l nax i gu iB po i n t f o r F.

(c) I f H takes both posi t ive and negat ive values, a is nei ther a

maximum qo^ a minimum point for F but s<aie kind o£ saddle point.

Proof. Let a = < a^, *2, .,., a^ >. Suppose H is positive at the point
k - < k g , k ^ > .

Cons ider the func t ion o f one rea l va r iab le defined by

<f{t) = F(a^ + tk^^, a^ + tkg, + tk^^).
(This ^ is F along the parametrised line t »-> a + tk.) We know that

' • ( 0 ) = =

because a i s a c r i t i ca l po i n t o f F, and

'(0) = 21
Hence <p has a strict local minimum point at 0. This cj£>(t) > cpifi)
f o r a l l s u f fi c i e n t l y s m a l l b u t n o n - a e r o t . B u t t h i s i s t h e s a m e a s

F(a ♦ tk) > F(a).

Thus, F takes values larger than F(a) at points arbitrarily near to a.

Henoe, a is certainly not a local maximum point for F.

Similarly, if H takes a negative value somewhere, there is a line through
the origin along which F has a strict loeal maximum at the origin. Henoe

the origin is not a local minimum point for P.

This proves (o).
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We next prove (a). Aasvoae H is positive definite. Then the Hessian

matrix M is positive definite. According to theorem 6.3.12, there i^ a positive

n u m b e r € s u c h t h a t t

If M* is ar^y' n X n symmetric matrix, e^ch of whose entries is

within € of the corresponding entry of M, then M' is also positive

Because the second order partial derivatives of F are al^ continuous pj

hypothesis, we can choose S so small that if b is any point with ||b - a|| < S
t h e n b € E a n d

f o r a l l i a n d i .

iF^Ub) . F;;(a)| < £

Now consider any point c = < c^̂ , Og, ..., c^ > with 0 < ||c - a|| < S
^y Theorem 8,4.5

F(e) = F(a) +j ̂  )(Oj-aj)ĝ  j(b)
whore b is some point on the segment joining a to o. (Remember the first

degree temjs are lero because a is a critical point.) This point b will

satisfy lib - alj < S and hence the matrix

F-(b) PiJ(b)
F " ( b ) F i : ( b )

. F;;(b)|

is positive definite. The sum in (11) is the quadratic form corresponding to

M* evaluated at o - a. Since o * a ^ 0, the sum is positive. Hence

F(o) > F(a).

This proves that a is a str ict local minimum for F. This finishes the proof

o f ( a ) . T h e B M o f o f T b ) I s s i m i l a r , fl



Ropiark. It is tempting to use the reasoning of the first p^rt of the proof to

prove (a) as follows. If H is positive definite, then F has a strict local
Bdnimuin at a along every stra ight l ine through a. Hence a is a local

m i n i m u m p o i n t f o r F.

That this last conclusion is a non-sequitur can be seen from the following

e x a m p l e . L e t

F(x,y) -= (y - x^)(y - 3x^).
Then F has a critical point at the origin and a strict local minimum point at

£he origin along every line through the origin. Nevertheless, the origin is not
a local minimum point for F. In fact,

? is negative everywhere in the region

3 be tween the pa rabo las y = and

y = 3x^. Hence F has a strict local ^
maximum point at the origin along the F>0^\V

papfchoia y = 2x^. The trouble is that
no line through the origin can penetrate

S i m m e d i a t e l y .

r h © H e s s i a n f o r m o f a f u n c t i o n a t a c r i t i c a l p o i n t c a n b e c l a s s i f i e d

according to the scheme of §6.3. Properties of the Hessian form are often
ascr ibed direct ly to the cr i t ical point . Thus a cr i t ical point is said to be

d e » ^ e n e r a t e i f t h e H e s s i a n f o r m i s d e g e n e r a t e . T h e c r i t e r i o n f o r t h i s i s t h e

vanishing of the Hessian determinant (ie., the determinant of the Hessian

matrix). The index of a critical point is the index of the Hessian form at

t h a t D o i n t .
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Suppose F Is a C^-function on ^ and a is a critical point of F.
;,et H be the Hessian form for F at a. Let be the a-coset of ^^e
l inear subspace P of ( ie . , is a "flat" space through a) . Consider

F resitricted to the set P^^. Then a is still a critical point fcr F ar^d
it is easy to check that the Hessian form for the restricted F at a is just

H restricted ^o P. (For P of dimension one, this was established in the
first part of the proof of 8.4.12. The argument given there extends to the

general case.)

Now suppose P has been so chosen that H restricted to P is positiv̂
definite. Then F restricted to P^ has a strict local minimum at a relative
to P^, the same argument, if N is a linear subspace on which H is
n e g a t i v e d e fi n i t e , a n d i s t h e a - c o s e t o f N , t h e n F , l i a s a s t r i c t ,

l o c a l m a x i m i a n a t a r e l a t i v e t o N , .

To make practical use of Theorem 8.4.12 we need some way to decide whether

the Hessian form is positive definite, negative definite, or indefinite. This

is provided by Theorem 6.3.8- We illustrate with an example.

Ejcamole. F ind the cr i t ica l po ints of the fo l lowing funct ion on and d iscuss

f = + xy + y^ + xa -f .

T h e fi r s t o r d e r p a r t i a l d e r i v a t i v e s o f f a r e

2 x + T + z

x+Zz - I

The critical points are found by setting all three of these e3q>reS9ioni^ *<1^ "to

zero and solving for x, y, and z. The first two equations lead to x = - 2z/3,

a n d w e fi n d t h a t t h e r e a r e t w o c r i t i c a l p o i n t s < 0 , 0 , 0 > a n d 8 > .



The Heasian nuitrix (at a general point) is

1 0 2 - i

The sequence of determinants (as in 6.3*8) is 1» 2, 3t ^

A t b o t h c r i t i c a l p o i n t s t h e H e s s i a n d e t e r m i n a n t i s r ^ o t z e r o , s o b o t h

critical points fl^re non-degenerate.

At th0 first cr i t ical point , < 0, 0, 0 >, the sequence is 1, 2, 3, i f .

T h e r e a r e n o c h a n g e s o f s i g n , s o t h e H e s s i a n i s p o s i t i v e d e fi n i t e a n d t h e r e i s

a s t r i c t l o c a l m i n i m u m p o i n t .

A t t h e s e c o n d c r i t i c a l p o i n t , < - 8 > , t h e s e q u e n c e i s 1 , 2 , 3 , - 4 .

T h e r e i s o n e c h a n g e o f s i g n g o t h e i n d e x i s o n e . T h e c r i t i c a l p o i n t i s a s a d d l e

p o i n t . T h e H e s s i a n f o r m i s p o s i t i v e d e fi n i t e o n t h e l i n e a r s u b s p a c e s p a n n e d

by < 1, 0, 0 > and <0, 1, 0 >, that is the x-y plane. Correspondingly,

f h a s a s t r i c t l o c a l m i n i m u m a t t h e c r i t i c a l p o i n t r e l a t i v e t o t h e p l a n e

whose equation is z = 8. Since the Hessian form is negative definite along

the 2-axis (= sp {< 0, 0, 1 >} ), f has a strict local maximum at the critical

point along the line x = - 16/3* y = 8/3.
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B x o r e i s e s

1 - Find the critical pplnts of the following functions on and discvise

t h e i r n fi ^ t u r e .

' r i .
( p ) s i n X + s i n y ( d ) x y t a n x + t a n y —

Do the sawe fpr the foUotwlng functions on 3R̂ .
| M | ,

(e) x^ + y^ + 3*^ - 2«^ (f) x^ + xy - X* + y^ - 8^

(m,

2t 3h0K that x^ + xV +7^ has * degenerate critical point at < 0, 0 > \

t h a t I s , n e v e r t h ^ e s s y a s t r i c t g l o b a l m i n i m u m p o i n t . ,

3 . Qalculate the Hessian form of the example on page 8-75 and show that It
1 W I I

Is degenerate. Note that the anomalous behavior appears along ci^urves

tangent to the subspace of degeneracy of the Hessian.

The Hessian form of a C *̂fiaietlon can be defined at any point as the
second degree terms In the second Taylor polynoBdal. Discuss, li^ t^rms

of the HessliMi form, whether the graph of a function P lies abov^ or m .

b^ow Its tangent plane near the point of tangency.

5 . If f Is a quadratic foiw, show that at every point the Hessian form of

f I s 2 f .

6 . dispose f Is on all of IR?* and flit evelry point the If^slan of f
^s positive definite. Prove thati If v and w are two distinct points

y r

i n a n d 0 < t < 1 , t h e n

f ( t v + ( l - t ) w ) < t f ( v ) + ( l - t ) f ( w ) . f m

A f unc t lwa sa t i s f y t h i s I nequa l i t y i s ca l l ed s t r l cUy convex . H ln t t —

Reduce t o t he one -d imens iona l case .
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a.5 A geometric view of functions, the iinplloit function theorem.

considering the ideas of level lines and level surfaces, we can acqui^re

v a l u a b l e i n s i g h t s i n t o t h e n a t u r e o f f u n c t i o n s o f s e v e r a l v a r i a b l e s . T h e s e

i d e a s a r e p a r t i c v i l a r l y u i ^ e f u l i n u n d e r s t a n d i n g t h e c o m p l e x o f r e s u l t s k n o w n

09llectively as the implicit function theorem. Roughly, this tel ls us when we

can "solve" the equation F(x,y) = 0 for y in terras of x.

8.5.1 Level l ines. Suppose f is a real-valued function defined on a plane

(or an open subset of a plane). For each real number consider the set

{ p « f(p) = 0().

If f is a reasonable function, these sets will be smooth curves, with perhaps

an occasional sir^gularity. Curves corresponding to nearly equal values of o(

wil l be more or less parallel. These curves are called level curves fpr f,

sometimes contour lir^es or contour curves. Functions of two variables are

o f t e n d e p i c t e d b y d r a w i n g a f e w r e p r e s e n t a t i v e l e v e l c u r v e s .

C o n t o u r l i n e s a r e o f t e n u s e d o n m a p s t o s h o w t h e e l e v a t i o n o f t h e t e r r a i n

T h e o n e h u n d r e d f e e t a b o v e s e a l e v e l c o n t o u r l i n e s h o w s ^ e r e t h e s h o r e w o u l d

be if the sea ro^e one hundred feet. Maps usually show contour lines for equal

i n t e r v a l s o f e l e v a ^ t i o n , s a y f o r o n e h u n d r e d f e e t , t w o h i j n d r e d f e e t , t h r e e h u n d r e d

f e e t , e t c . T h e s p a c i n g o f t h e c o n t o u r l i n e s o n t h e m a p t h e n t e l l s w h e t h e r t h e

h i l l s a r e s t e e p o r g e n t l e . I f t h e c o n t o u r l i n e s a r e c l o s e t o g e t h e r i t m e a n s t h a t

w e u p a l o t i n a s h o r t l i n e a r d i s t a n c e . T h e h i l l s a r e s t e e p . W h e n t h e

contour l ines are far apart, the hi l ls are gentle. Similar considerations apply

t o t h e l e v e l l i n e s o f a f u n c t i o n .

The o(-level curve for a function can be obtained from its graph as

follows t Find the curve where the graph intersects the hori*ontal plane

X = a n d " d r o ^ p " t h i s c u r v e o n t o t h e x - y p l a n e .
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Abovej Surface cut by equally spaced horizontal planes.

B e l o w : C o r r e s p o n d i n g l e v e l l i n e s i n t h e x - y - p l a n e .

I f f i s a f i r s t d e g r e e f i i n c t i o n o n a p l a n e , i t s l e v e l c u r v e s a r « a l l

s t r a i g h t l i n e s . G e o n e . t r i c a l l y t h i s i s b e c a u s e t h e g r a p h o f f i s a n o n -

horizontal plane and it wil l meet any horizontal plane in a l ine. Analytically

t h i s c a n b e s e e n a s f o l l o w s t I n c o o r d i n a t e s f - a + b x + c y w h e r e b a n d

f s a v * A m n - f K r k - f . K t 1 a v a 1 f r t i * f h A S t h a d a u a t i o n

a4-bx.+ cy = 0(,

and this represents a straight l ine. Moreover, the lines porrespondiii ig to .

equally spaced levels are equally spaced parallel l ines. The level difference

divided by the distance between level lines is the tangent of the angle between

t h a fi r r a n h o f f a n d t h e h o r i z o n t a l n l a n e .
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When we turn to more eonplieated funotlons, the level curves are usually

some sort of sfflooth ouirves. Nearby level ourvM are usually in some sense

paral le l . This concept Is a b i t vague, but i t is c lear ly i l lustrated in the

f o l l o w i n g e x a m p l e .

Consider the function y^
o n t h e p l a n e . I t s l e v e l c u r v e s f o r

p o s i t i v e v a l u e s a r e c o n c e n t r i c / / , / \ \ \
c i r c l es . The o r i g i n i s a degene ra te 1 J
level curve. If we look at this /
f a m i l y o f c u r v e s a t a p o i n t p ^

o t h e r t h a n t h e o r i g i n w i t h a h i g h - ^
powered microscope, the curves will

a p p e a r t o b e p a r a l l e l s t r a i g h t l i n e s . /
T h e fi e l d o f v i e w w o u l d b e s m a l l b u t . p X y

m u c h m a g n i fi e d . W e w o u l d s e e c i r - ^ /
c u l a r a r c s o f s u c h l a r g e a p p a r e n t ^
r a d i u s t h a t t h e y w o u l d l o o k s t r a i g h t . 2 2

L e v e l c u r v e s f o r x - i - y .
This is almost equivalent to saying Lev^^^ 2, 3, and 4.
that x^ + y^ is differentiable Below: Ten times magnified view of

small inset circle, showing
a t p . A f u n c t i o n i s d i f f e r e n t i a b l e a d d i t i o n a l l e v e l c u r v e s .

at p i f , when looked at in a

sufficiently small neighborhood of p, i t becomes indist inguishable from a

firs t degree func t ion . I t i s impor tan t , however, tha t p no t be a c r i t i ca l

point. No matter what magnification we use, if we look at the origin ( a

critical point for li + y^) we will see the degenerate level curve surrounded
b y c o n c e n t r i c c i r c l e s .

T h e s a m e b a s i c i d e a s a p p l y t o f u n c t i o n s o f t h r e e v a r i a b l e s . I f f i s a

real-valued function defined on space, the level sets

{ P « f(p) = K }



i d l l u s u a l l y b « s m o o t h s u r f s e s s a n d a r o t h s r o f o r o o a l l o d l > 7 s l s u r f a o s a . T h a

laival aurfaoM for a first degraa funotlon wil l ba parallel planas with squally

spaesd valuss of c< oorrs^onding to squally spaosd planss. For nors oom-

lO ioatsdy bu t s t i l l d i f f s rsn t iab ls , func t ions ths Isv^ sur faoss w i l l bs

ourvsd, but if vlswsd with a nicrosoops thsy will appsar liks parallsl planss,

ths rsssid)lAncs inorsasing as ths fl^d of visw dininishss and ths nagnifioation

inoreasss, all providsd ws are not looking at a crit ical point.

L s v ^ s u r f a o s s f o r a f u n c t i o n o n t h r s s - s p a o s a r s p a r t i c u l a r l y v a l u a b l e

b s c a u s s t h s y c a n b s d i r s c t l y v i s u a l i s s d w h s r s a s t h s g r a p h o f s u c h a f u n c t i o n

cannot (bscauss it takss four dinsnsions).

T h s i d s a o f I s T s l s u r f a o s s r s n a i n s s s n s i b l s f o r f u n c t i o n s o f m o r e t h a n

thres variablss svsn though ws can no longsr visualizs thsm. Ths Isvel surfaces

f o r a f u n c t i o n o f f o u r v a r i a b l s s w i l l b s c u r v s d t h r s s - d i m s n s i o n a l s u r f a o s s i n

f o u r - s p a c s . I n t h i n k i n g a b o u t s u c h t h i n g s w s a r s f o r c s d m o r s t h a n s v e r t o

r ^ o n t h e a n a l s r t i c d e fi n i t i o n s . B s c a u s s t h s a n a l y t i c d e fi n i t i o n s s s r v s s o

w^ to describs our intui t ive conc^t ions of curres and surfaoss in three-

space9 we can feel reasonably confidant that our perceptions of thrse-spaos

wil l provide valid insights into ths naturs of higher«dinensional spacs.

Ws shall give a geometric argument that shows that lev^ lines ars smooth

c u r v e s . S v Q s p o s s 3 i s a s m o o t h s u r f a c e i n t h r e e - ^ s p a c e . B y t h i s w s m s a n t h a t

3 has a wsll*dsfinsd tangsnt plans T^ at every point q and T^ movss
cont inuous ly w i th q . Le t H be a p lane tha t cu ts 3 in a curvs C. Ws

would liks to shoif that C is a smooth curvs. Suppose q is a point of C
such that T ^ H. Thsn H n T^ is a line. 3ince 3 hugs clossly to T

H q q
near q, H n T^ will be tangent to H n 3 = C at q. This shows that
C has a tangsnt at svsry point q except thoss for which T̂  = H. Morsovsr,
sines Tq movss continuously with q, H n T̂  movss continuously with q.
Thus, C is a smooth cuî  (has a eontinuously turning tangent Uns) as long
a s w e a v o i d p o i n t s a t i r t i i c h H « T .



An analytical version of this argument will be part of the proof of theorem

Suppose now that S is the graph in 'B? of some C^-function F j
If q is a point of S, say q = < a, b, F(a,b) >, the equation of the plane

Tq tangent to 3 at q is
« = F(a,b) + F*(a,b)(x - a) + F'(a.b)(y - b).

Since the coefficients here are continuous functions of a and b (because

F is C )̂, moves continuously with q. Let H be a horizontal plane
c u t t i n g S . I f q e H n S , t h e c o n d i t i o n t h a t H i s t h a t a t l e a s t o n e

of the coefficients F'(a,b) and F|(a,b) is not zero; that is

dF(a,b) A 0.

Now the curve C = H n S is, except for being "dropped" onto the x-y.plane.

a level curve for F. We conclude that the level curves for F are smooth

curves except possibly at points where dF vanishes.

Now consider an arbitrary point q of the surface S and its tangent

plane T^. Let L be any line in passing through q. We can choose the
plane H so that H fl = L. Then L will be the line tangent to H n S at

q. Hence we conclude that every line through q in T is tangent to some

s m o o t h c u r v e i n S .

8.5.2 The gradient of a function. Let f be a real-valued C^-function defined
on an open set 5 of an inner product space V. Then df is a differential

form on B, that is, a function from B to V». If coordinates are at hand,
df becomes a functions whose values are row vectors. There is no convenient

way to visualize a row vector geometrically. However, because of the inner
product in V, it is possible to replace a row vector by a column vector, and
a column vector has a simple geometrical representation.
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According to Theorem 5.4.18 (p. 5-66) for each linear functional g on
V t h e r e i s a v e c t o r w i n V s u c h t h a t

(\/ V e V) g[v] = (w,v).

Now df(p) is a linear functional on V, so there is a member of V that

rep resen ts i t . Th is vec to r i s ca l l ed the g rad ien t o f f a t p . We wr i te i t

Vf(p). (The symbol 'V* is pronounced "del".) The gradient of f is then
a f u n c t i o n V f f r o m S t o V. I t i s a v e c t o r fi e l d i n t h e s e n s e o f 7 . 4 . 1 .

The defining relation for the gradient is

(Vv^ V ) d f (p ) [ v ] - (V f (p ) , v )

and the chain rule for computing the derivative of fog where g is a

p a r a m e t r i c c u r v e i n V b e c o m e s

( f o g ) ' ( t ) = ( V f ( g ( t ) ) , g ' ( t ) ) .

(See 8.3.35.)

How do we find this vector field computationally? If we are using ortho-
normal coordinates, just transpose the row vector df to obtain the column

vector Vf. Thus, Vf is the column vector whose components are the
partial derivatives of f, lil ^ coordinates are orthonormal. To see this,
note that, if coordinates are ortho-normal, the inner product of two vectors

V and w is the same as the matrix product v̂  w . For example
^1

( + V3 = 11^1 ^2 '3l l- "2
The stress on orthonormal coordinates is quite necessary becaxise when other

systems of coordinates are used, the gradient has quite a different appearance.
(See exercises 15 and 16.) It is important to realize that the gradient
vector field of a function is independent of coordinate systems, it is only
its representation that changes with the coordinates. Thinking in terms of



m

orthonormal eoordiiuitea, wo see right away that the gradient of a (T-function

i s a c o n t i n u o u s v e c t o r fi e l d .

Vfhy bother vith both the differential and the gradient of a function?

We could certainly get along with just one of them. Since the gradient

is a vector field, we can visualize it as an arrow diagram as on page 7-5^. This

can be very helpful. More important, however, are the many physical inter

pretations of the gradient. We shall touch briefly on these below.

The gradient is defined only when an inner product is available. Of course,

we can always in^se an inner product on a vector space, but if an inner product

is imposed that is not germane to the situation under study, the gradient of a

f u n c t i o n i s n o t l i k e l y t o b e u s e f u l .

Let us find the relation between the gradient vector fi^d of a function

and its graph and level curves. S\̂ pose f is a real Ĉ -function defined on
a plane, and let p be a point of the plane. The directional derivatives of f

a t p (p . 8 -36 ) a re t he de r i va t i ves o f f a l ong un i t vec to rs u . They a re

g i v e n b y

df(p)[u] = (Vf(p), u).

Since ||u|| =1, the Cauchy-Schwarz inequality tells us that

- IIVf(p)ll < {Vf(p), U) < |lVf(p)ll .

with the upper equality holding if and only if Vf(p) and u have the same

di rec t ion . Hence, o f a l l d i rec t ions a t p , the one in wh ich f inc reases

fastest is the direction of Vf(p), and llVf(p)|| is the directional
d e r i v a t i v e i n t h i s d i r e c t i o n .

Think of the graph of f as a three-dimensional landscape over the x-y-

p l a n e . L e t q b e t h e p o i n t o f t h e g r a p h o v e r t h e p o i n t p o f t h e x - y - p l a n e .

T h e n q i s a p o i n t o n a h i l l s i d e . O u r l a s t r e s u l t 8 a 3 r s t h a t t h e g r a d i e n t

v e c t o r a t p p o i n t s i n t h e d i r e c t i o n o f t h e s t e e p e s t a s c e n t o f t h e h i l l a t q ,

whi le the length (norm) of the gradient tel ls how steep the hi l l is . I f the

gradient is zero at p, there is no ( instantaneous) r ise or fa l l o f the h i l l
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in any direction. Such a point could be a hill-top (maximum point for f)

a pit-bottom (minimum point for f), or a pass between two hills (saddle point
for f). Note that the gradient of f is zero exactly when the differential of
f is zero, so the gradient vector vanishes exactly at the critical points of f.

Along a line through p orthogonal to V f(p) the directional derivative
is zero. This means that f is not varying (instantaneously) along this line
In terms of hills it means, if the steepest line on a hill is North-South, the

slope is zero in the East-West direction. In the very simplest case, f is
a first degree function and its graph is a non-horizontal plane. The level

curves for f are parallel lines. The gradient of f is a constant vector

field (ie., Vf(p) is independent of p) perpendicular to these lines. The

gradient vectors are always orthogonal to the level curves. Suppose t g(t)
is an arc^length parametrization of the level curve through p with g(0) ^ p.
Then fog is a constant function, so

(fog)'(O) = (Vf(p), g'(0)) =0.

But g*(0) is a unit vector tangent to the level curve at p. This shows that
the gradient vector at p is orthogonal to the level curve through p.

We can now make more precise our previous claim that nearby level curves

are nearly parallel. Suppose that Vf(p) ^ O. Since Vf is a continuous

vector field, in a smal l neighborhood of p, V f is a lmost constant. This

implies that all values of Vf near p are almost parallel to one another.

(Note that this would not follow if Vf(p) ^ 0.) Hence the level curves,
being at each point orthogonal to the gradient at that point, are almost parallel

For a function f defined on three-space the results are essentially the

same. The gradient vector at p points in the direct ion in which f increases

fastest. Assuming Vf(p) 0, the level set for f through p is a smooth

surface near p and its tangent plane at p is orthogonal to Vf(p). All
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the planes tangent to level surfaces of f at points near p wi l l be near ly

parallel to one another and this will give the lev#l surfaces themselves the

a p p e a r a n c e o f b e i n g p a r a l l e l . I f V ^ C p ) = 0 , p i s a c r i t i c a l p o i n t f o r f ,

and the level set for f through p need not be a smooth surface at all (in

fact, usually it will not be, as we shall see). As before any smooth curve

l y i n g i n t h e l e v e l

passing through p and lying in the level set of p wi l l have i ts tangent

vec to r o r thogona l to V f (p ) , bu t th is te l l s us no th ing s ince V f (p ) = 0 .

8.5.3 Level curves and surfaces near a non-degenerate critical point. Suppose
f is a real-valued CT-function defined on a plane. We have seen that, near

a point p where df (or Vf) does not vanish, the level curves are smooth

a n d r o u g h l y p a r a l l e l . L e t g b e t h e fi r s t Ta y l o r p o l y n o m i a l f o r f a t p

and th ink of the level sets for g. Since g is a first degree funct ion, these

level sets are a fami ly of paral le l s t ra ight l ines. The level curves for f
^ itself can be obtained by bending those for g slightly. The level curve for

g t h r o u g h p i s t h e l i n e t a n g e n t t o t h e l e v e l c u r v e f o r f t h r o u g h p . B y

slightly bending this l ine we can make it ( locally) the level curve of f.

If we think of the plane as made of rubber, it is easy to see haw we can

deform a small piece of the plane near p so as to make the level liniss for g

^ c o i n c i d e w i t h t h e c o r r e s p o n d i n g l e v e l l i n e s f o r f . T h e r e i s , i n f a c t , a

t h e o r e m t h a t m a k e s t h i s s t a t e m e n t q u i t e p r e c i s e .

T h e s i t u a t i o n i n t h r e e o r m o r e d i m e n s i o n s i s s i m i l a r . L e t f b e a r e a l -

v a l u e d C T- f u n c t i o n , l e t p b e a n o n - c r i t i c a l p o i n t f o r f , a n d l e t g b e

t h e fi r s t T i i y l o r p o l y n o m i a l f o r f a t p . I t i s p o s s i b l e t o d e f o r m s p a c e

^ slightly near p, with the distortion getting less and less as we approach p,
s o t h a t t h e l e v ^ s u r f a c e s f o r g , w h i c h a r e p l a n e s , b e c o m e t h e c o r r e s p o n d i n g

l e v e l s u r f a c e s f o r f .
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Now let f be a Ĉ -function, let p be a non-degenerate critical point
for f, and let g be the second Taylor polynomial for f at p. Again it
is possible to deform space near p slightly so that the level sets for g
b e c o a e t h o s e f o r f .

Suppose for a moment that space is two-dimensional (ie., a plane), and to
avoid excessive notation, suppose the critical point is the origin and that f
vanishes there. Then the second Taylor polynomial for f at the origin is
just a quadrat ic form, g.

If g is positive definite, its level sets are a one point set, the origin,
surrounded by concentric ellipses. Therefore, near the origin the level sets
for f consist of a one point sot, again the origin, surrounded by curves that
are slightly deformed concentric ellipses. The one point level set through the
origin is consistent with the fact that f has a strict local minimum at the
origin. If we look at a neighborhood of the origin with a microscope, as the
magnification increases, the more nearly will the level sets for f resemble
the leve l se ts for g .

If g is negative definite, the picture is essentially the same. The
level sets for g are the origin and concentric ellipses (The ellipses now
correspond to negative values of g.), while those for f are the origin
and slightly deformed concentric ellipses.

Now assume that g has index one. Then the picture is quite different.
The level set for g through the origin consists of a pair of crossed lines.
Each other level set consists of two disconnected parts and is a hyperbola.
We can get the level sets for f by deforming the picture slightly, keeping
the origin fixed. The level set for f through the origin will consist of
two crossed curves, each tangent to one of the lines of the level set for g.
The other level sets for f will resemble the hyperbolas for g. They will
be disconnected near the origin, but they may be reconnected at some remote point.



An •xuspl* win show how to use these facts. The function - x^(x + 3)
has two critical points in the plane, both non-degenerate. At < - 2, 0 >

i t h a s a s t r i c t l o c a l B d n i n u m p o i n t w i t h

v a l u e - 4 . T h i s i s s h o w n i n t h e fi g u r e

a d o t . A t < 0 , 0 > t h e r e i s a j
c r i t i c a l p o i n t o f i n d e x o n e . T h e l e v e l

set through the origin therefore consists U-—•
l o c a l l y o f t w o c r o s s e d c u r v e s . S i n c e t h e

s e c o n d T a y l o r p o l y n o m i a l i s y ^ - \
the curves are tangent to the two l ines ^
given by y^ - 3x^ =0; that is,
y = + /3 X. It turns out that the crossed

curves eventually join together to make a single curve that crosses itself.

The figure also shows the level curves for values + 1 and - 1. The former

is connected, while the latter consists of a closed curve sxirrounding the

minimum point and an infinite arc in the right half plane.

F r o m t h i s i n f o r m a t i o n i t i s e a s y t o d e s c r i b e a l l t h e l e v e l s e t s . F o r

values less than -4, there wi l l be one arc in the r ight hal f -p lane. At level

-4 the minimum point at < -2, 0 > appears as well. For values between -4

and 0, there will be a closed loop surrounding the minimum point and an arc

in the right half-plane. These two parts coalesce for value 0 to make the

curve that crosses i tsel f at the or igin. The level sets for al l posit ive values

w i l l b e r o u g h l y l i k e t h e o n e s h o w n f o r + 1 .

The values taken by f a t i ts cr i t ica l po ints are ca l led cr i t ica l va lues.

Generally speaking, the level sets corresponding to nearby values have the same

rough shape, but there is an abrupt change of shape when a critical value is

passed. In the example, the level sets were connected for values less than -4,
but a new piece appeared as we passed the critical value -4. The level sets

remained in two pieces until we got to the critical value 0, at which point

t h e t w o p i e c e s c o a l e s c e d .
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Gross changes in shape can also occur when the level curves "go to infinity."

An example of this phenomenon is given by the function

There are crit ical points at < -1, 0 >

and < +1, 0 >, both non-degenerate.

The f o rme r i s a m in imum and t he l a t t e r

a m a x i m u m . T h e l e v e l c u r v e s a r e a l l

c i r c l e s e x c e p t t h e l i n e x = 0 . A t t h i s

level (value 0) the shape of the level

curves changes abruptly although there

i s n o c r i t i c a l p o i n t .

In general if you can find the level sets for the critical values of f,

t h e r e s t c a n e a s i l y b e s k e t c h e d . A l l o t h e r l e v e l s e t s a r e c u r v e s w i t h n o

s i n g u l a r i t i e s . B e t w e e n t w o c o n s e c u t i v e c r i t i c a l v a l u e s t h e l e v e l c u r v e s m u s t

m a k e a s m o o t h t r a n s i t i o n f r o m o n e c r i t i c a l l e v e l s e t t o t h e o t h e r . T h i s i n

itself is usually enough to determine their appearance to a satisfactory level

o f a c c u r a c y.

What we have done applies only to non-degenerate critical points. Near

a degenerate critical point the level sets may have a very complicated structure.

In fact, no complete analysis of the structure of functions near a degenerate

c r i t i c a l p o i n t i s k n o w n .

Level surfaces for functions defined on three-space are in a way even more

important than level curves in the plane, because level surfaces provide the

only way we can visualize functions on three space. Fortunately, the ideas
are essentially the same as in the plane. We stick to functions of class

at least with only non-degenerate crit ical points.

There are basically only two kinds of critical points. Those of index
zero and three, corresponding to minimum and maximum points of f, are one

kind, while those of index one and two, corresponding to saddle points, are the



other. At a crit ical point of index zero or three there is a one point level

set surrounded by slightly deformed ellipsoids.

As we saw in chapter six (p. 6-92 ff) the critical level set for a quadratic

form of index one or two is a quadrlc cone. The region inside the two nappes

of the cone is packed with hyperboloids of two sheets, one sheet in each nappe.

The region outside the nappes is wrapped with hyperboloids of one sheet.

If the index is one, the hyperboloids inside the nappes correspond to the values

less than the crit ical value. If the index is two, these hyperboloids corres

pond to values greater than the critical value. According to the general
resul t the level sets for f wi l l be sl ight ly deformed versions of those for

its second Taylor polynomial. In particular the critical level set for f

will be a deformed quadrlc cone. Although otherwise a smooth surface, it

pinches down to a point as it passes through the critical point.

T h e a c t u a l d e t e r m i n a t i o n o f t h e l e v e l s e t s f o r a g i v e n f m a y b e q u i t e

a difficult task, but as in the case of two variables it is easier if we keep

in mind the general facts about their structure. The first thing is to find

the critical points of f and then the level sets corresponding to the

crit ical values. All remaining lev^ sets are smooth surfaces with no singu

l a r i t i e s . W e I l l u s t r a t e w i t h a n e a s y e x a n ? > l e .

Let f = y^ + - x^(x + 3)« There are critical points at < -2, 0, 0 >
and <0, 0, 0 >. They are both non-degenerate and have indices 0 and 1,
respectively, with critical values -4 and 0. If we fix x, that is,
confine our attention to a plane of the form x = A, we see that the level
sets become circles with center on the x-axls. Therefore the level sets are

a l l sur faces o f revo lu t ion wi th ax is the x-ax is . In fac t they are the

surfaces obtained by revolving the level curves of the example of page 8-89

The 0-lev^ set Is worthy of part icular note. I t is a surface with a bubble

pinched off a t the or ig in. The conical point at the or ig in is character is t lo

a - r t . h A A T ^ t l o a l B o l n t o f i n d e x o n e .



8.5.^ Fall linos. Let f be a function defined on the plane and let us

consider once again the graph of f as a landscape spread out over the

x-y-plane. If a drop of water is spilled on a hillside it will run down the
hill taking the steepest path down. Let us neglect any tendency of the water

to "coast" because of acquired velocity. Then the path of the water will

always be exactly along the line of steepest descent. The path of the water

projected down on the x-y-plane will always have the direction of the
negative of the gradient of f. This condition becomes a differential equation
satisfied by the projected paths that in reasonable cases completely determines

the paths. The paths are called fall lines for f.

Suppose X and y are cartesian coordinates in a two-dimensional inner
product spaeo V. Lot f - We shall find the fall lines for f.

We seek parametrised curves g s E —» V such that, for any t, g'(t)
the tangent vector to the curve has the direction of -Vf(g(t)). While we
a r e a t i t , l e t u s m a k e

g'( t) = - 7f(g(t)) .

This means we are prescribing the rate at which the fall line is to be described

W r i t e g i n c o m p o n e n t s , s a y

so (5) becomes

II- 2u(t)
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f o r s u i t a b l e c o n s t a n t s a a n d b w h i c h a r e d e t o r m i n o d b y w h a r a t h a n o t i o n

s t a r t s . V / a c a n a l i s d n a t a t h a r a a n d e o n c l u d a t h a t t h e m o t i o n t a k e s p l a c e

a l o n g t h e c u r v e w i t h e q u a t i o n

3cy = ab.

If ab A 0, this is a hyperbola. It falls in two parts and the motion takes

place along just one of them. The fal l l ines of f are therefore, for the

most part, half hyperbolas. A motion that starts at the origin wil l be

stationary, and a motion that starts elsewhere on a coordinate axis will

take place on a half line from the origin.

The curves we have found have the property that at every point they are

orthogonal to the level cuirves of f. They are therefore also known as the

o r t h o g o n a l t r a . l e c t o r i e s o f t h e l e v e l c u r v e s .

8 . 3 . 6 P o t e n t i a l fi e l d s . I t f r e q u e n t l y h a p p e n s i n p h y s i c s t h a t a b o d y h a s

p o t e n t i a l e n e r g y b y v i r t u e o f i t s p o s i t i o n a l o n e . T h e f u n c t i o n t h a t t e l l s t h e

potential energy of a given body in a given place is called the potential

function. There is always a tendency for bodies to move so as to reduce

their potential energy, so a body in a potential field will experience a force

that tends to move it as quickly as possible to a point of lower potential

e n e r g y. T h e m a g n i t u d e o f t h i s f o r c e i s p r o p o r t i o n a l t o t h a r a t a a t w h i c h

the potential energy fal ls with distance. Hence if units are chosen correctly,

the force is exactly the negative of the gradient of the potential energy

funct ion. Many, but not a l l , of the force fi^ds that ar ise in physical

problems are the negative gradient of some potential function. Force fields that

d o a r i s e i n t h i s m a n n e r a r e c a l l e d c o n s e r v a t i v e , b e c a u s e t h e p r i n c i i a e o f t h e

conservation of energy (potential plus kinetic) applies to bodies moving under

the influence of such force fields. (I t does not apply to other force fields

unless reckoning is made also of the energy necessary to naintain the field.)

An extremely important example of a conservative force fi^d is the

gravitational fi^d surrounding a heavy body. (See exercise 10.)
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Exercises. Assume throughout that x and y are orthonormal coordinates on

a plane and x, y, and z are orthonormal coordinates on three-space.

1. Find a parametric representation for the line normal to the surface in space

given by x^ + y^ + sin xyz = 0 at the point < 1, -1, 0 >.
2. Find an equation for the plane tangent to x^ - xy^ + 2y^ = 2z^

a t t h e p o i n t < 1 , 1 , 1 > .

3. At what points of the plane does the gradient vector of x^y + 2y^ point
toward the origin? (We think of the gradient vector of f as Tninning from

V t o V + V f ( v ) . )

At what points of the plane are the level c\irves for x^ + y^ perpendicular
t o t h o s e f o r x y ?

5. At what points of the plane are the level curves for x^ - -p tangent to
those for x^ + xy ?

6. Show that, although x^ + y^ has a degenerate critical point, all of its
l e v e l s e t s a r e i n f a c t s m o o t h c u r v e s .

7 . W h a t i s t h e m a x i m u m v a l u e o f t h e d i r e c t i o n a l d e r i v a t i v e o f t h e f u n c t i o n

considering all directions at all points of the plane?

8. If the gradient of a function on three-space always points towards the origin

(see ex. 3.)» show that the function is constant on spheres with center at
t h e o r i g i n .

9. Find the fall lines for the fimction x^ + 2y^.
10. The potential energy of a body of mass m in the gravitational field of

a fixed body of mass M is -KMm/̂  where p is the distance between them.
Show that the gravitational force on the first body is the negative of the

g r a d i e n t o f t h i s p o t e n t i a l f u n c t i o n .



11. Is the set defined in three-spaoe bgr

■f s i n 3 ^ = 1

everywhere a smooth su r face?

12. Sketch the level curves in the plane for

( a ) s i n X + s i n y ( c

13. Suppose f is a real valued function defined on all of the plane and

that al l of i ts level sets are straight l ines. Show that there are

numbers a and b and a function g of one variable such that

f ^ g(ax + by).

What happens if f is defined on less than the whole plane, but all its

level sets are straight line segments?

1^. The plane curve defined by 2x^ + + 4xy + = 1 crosses itself.
Where is the crossing and at what angle does it cross?

15. Suppose bg, ..., b^ is a basis of an inner product space V and

3C^, *2* •••• *n coordinate functions on V associated with this
basis. Let M be the matrix of the inner product referred to this basis.

Show that in this coordinate system the gradient of a C^-function f is
g i v e n b y

16. Suppose V and w are continuous vector fields defined on a subset E

of two dimensional inner product space V, Suppose that v(p) and w(p)

are linearly independent at every point p. Show that any continuous

vector field u on E can be written u ^ gv + hw (pointwise) where

g and h are continuous functions from E to B. (Continued next page.)
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When computations are done in a two-dimensional inner product space ̂
using polar coordinates, it is customary to refer vector fields defined on
E = V - {origin} to the basis vector fields r and © (these are usually ^
written in bold-face type) defined as follows: For p 6 d), r(p; is
the unit vector with the direction of p; ie., r(p) = p/||p||. (Remember
p itself is a vector.) e(p) is the unit vector obtained from r(p) by
r o t a t i n g i t 9 0 " i n t h e p o s i t i v e d i r e c t i o n . - -

S h o w t h a t ^
c o s © - s i n 0 1 1

s i n G c o s & I I

where the column vectors are with respect to the usual Cartesian coordinates, H
Show that the gradient of a C -̂function f is given by

V f . "
^ <50 ^

8.5.7 The implicit function theorem. Given a function F of two real variables
the question often arises, can we solve

F(x»y) ^ 0
for y 7 The implicit function theorem gives us valuable information about this
problem. It is important to get in mind, however, what exactly we mean by
" s o l v i n g f o r y . "

Consider first some particular cases.

+ xy + 5x + 4y - 0

^ 9 ) y " ^ + y - X - 0

s i n y - X ^ 0



I t i s M87 to so lve (8) fo r y.

provldod X ^ -4; thore Is no y satisfying (8) if x = -4. Here we have

solved for y in the best possible sense. We have a formula for y in terms

of X using only the familiar operations. We certainly cannot expect to do

t h i s w e l l i n a g e n e r a l c o n t e x t .

E q u a t i o n ( 9 ) i s m o r e d i f fi c u l t . F i x a n x t e m p o r a r i l y. A s y i n c r e a s e s

from - 00 to + oo, y^ + y also increases from - a> to + oo. Hence, by
t h e i n t e r m e d i a t e v a l u e t h e o r e m , t h e r e i s a u n i q u e v a l u e o f y s u c h t h a t

n

y + y = x ; m o r e o v e r , t h i s v a l u e i s u n i q u e . H e n c e f o r e a c h r e a l n u m b e r x

there is a unique y such that (9) is t rue. This determines y as a funct ion
n

o f X . I n t e c h n i c a l t e r m s , { < * , y > t y - f - y - x - O } i s a f u n c t i o n . N o t

a f a m i l i a r f u n c t i o n t o b e s u r e , b u t a f u n c t i o n . W e o f f e r n o w a y t o c o m p u t e i t

other than to solve (9) afresh for each new value of x using your favorite

algorithm for finding the roots of polynomial equations. This is the kind of

i n f o r m a t i o n t h a t t h e i n ^ l i c i t f u n c t i o n t h e o r e m g i v e s t t h e r e e x i s t s a f u n c t i o n

that so lves the g iven equat ion. I t w i l l a lso t^ us that the so lu t ion funct ion

is differentiable. For example, the solution of (9) is C^.

Another complication arises with equation (10). For some values of x

there are no va lues o f y that sa t is fy (10) ; fo r o thers there are infin i te ly

many. To express y as a function of x means that we must assign a unique

va lue o f y t o each x . So we a rb i t ra r i l y d i sca rd va lues o f y ou ts ide

[-7r/2, ir/2]. For each value of x in [-1, l] there is a unique y in

[-7r/2, ir/a] such that (10) holds. This defines a real-valued function with
d o m a i n f - l . l l . T h i s h a s b e c o m e a f a m i l i a r f u n c t i o n , u s u a l l y w r i t t e n a r c s i n .

V ^ A i H s a l n *

we have solved (10) for y, but only in a limited sense, because there are

m a n v n a i r s < x . v > . f o r e x a m b l e . < O . T T > . t h a t s a t i s f y ( 1 0 ) b u t n o t ( 1 1 ) .



We must bo prepared for this possibility in any general theorem on solving for y

The best way to understand the theorem is through level sets. Given F,

S { < X, y > : F(x,y) = 0 }

is just the 0-level set for F in For a general F there is no guarantee
that S is not empty. Hence the theorem will assume that we have a point
< a, b > of S in hand. Then we ask, is the part of S near < a, b > the

graph of a function? We have given geometric arguments to show that near
< a, b >, S is a curve provided dF(a,b) ^ 0. Now we shall give an analytic

proof that it is the graph of a function provided F^Ca.b) /: 0.
If a piece of S is the graph of a function g, then

y = g(x)
can be regarded as the result of solving F(x,y) ^ 0 for y in terms of x.

The theorem will not say how large the domain of g will be, only that it will
be some interval around a. There wiU be no claim that g can be expressed in
terms of familiar functions. Although we cannot claim that our solution is

unique globally, i t is the only solution that is contintious and satisfies

g(a) = b.

8.5.12 Theorem. Let B ^ open set ^ ^ F s B —>]R be a
Ĉ -functlon. Suppose < a, b > 6 E, F(a,b) = 0, and F'(a,b) yt 0. Thoni

Existencet There exists an open interval I ^ B such that a 6 I and
a C -̂funetlon g t I » such that g(a) ' b and

(V* ^ I) F(x,g(x)) = 0.

Uniquenesst is a sub in terva l o f I conta in ing
is a continuous function such that h(a) = b ^

(V* ^ J) F(x,h(x)) = 0,
t h e n h a n d g a g r e e o n J .

a n d h 1 J — > J R



Proof. Since F^Cayb) ̂  0, we shall assume that F^Ca^b) Is actually positive.
(If It Is negative, consider the function - F Instead.) Set Fj(a,b) - 2o< ,
where > 0. Since Fj Is continuous, there Is an open disk A about
P - < a, b > such that FgCx.y) > ^ for all < x, y > 6 A . Say the radius
o f A I s 2 S .

C o n s i d e r t h e fi g u r e ; s o n e o f t h e n o t a t i o n I s d e fi n e d t h e r e .

P = < a, b >

R = < a , b - 8 > R * - < a , b + S >

S * Z \

S = < a - £ , b - 6 > S ' = < a - £ , b - » - 5 >

T = < a + 6 , b - 6 > T * - < a - h £ , b - « - 5 >

Z = < x , b - S > Z * = < x , b + 8 >

K — — > 1
S Z R T

Because Fj Is strictly positive on A, F Is strictly Increasing along
the segment RR*. Since F(P) = 0, F(R) < 0 and F(R') > 0.

I f € I s a s u f f i c i e n t l y s m a l l p o s i t i v e n u m b e r t h e n

S, S*, T, and T* are all In A,
F I s n e g a t i v e a t e a c h p o i n t o f t h e s e g m e n t S T, a n d

F Is positive at each point of the segment S'T*.

(The last two condtlons by the continuity of F.)

C h o o s e a n y p o i n t x o f I = ( a - £ , a + £ ) . T h e n x I s t h e a b s c i s s a o f a

vertical segment ZZ*. We know that F(Z) < 0 and F(Z*) >0, so by continuity

F(Q) = 0 for some Q on the segment ZZ*, Since Fj is strictly positive on
ZZ* , F Inc reases s t r i c t l y a long ZZ* , so the po in t Q i s un ique . We define

g (x ) as t he o rd i na te o f Q . B ien F (x , g ( x ) ) =0 .

This construction is val id for any x 6 I, so the required function

g t I —> H has been found. (It should be clear that the construction of g can



be given in purely analytic terms. The notation is just messier and the ideas

a b i t h a r d e r t o f o l l o w . ) m u s t s h o w t h a t g i s b u t fi r s t w e s h a l l

p r o v e t h e u n i q u e n e s s .

Suppose h is a continuous funct ion defined on a subinterval J of I

satisfying h(a) = b and F(x, h(x)) =0 for all x 6 J. We give an indirect

p roo f tha t h ag rees w i th g .

Suppose for some x 6 J, h(x) ^ g(x). Then h(x) does not lie in

[b - 6, b + 8j because there is only one number y (namely, y = g(x)) such
that F(x,y) =0 and y G [b - & , b + S] • Say that h(x) > b + S . By the

continuity of h, there must be a point x* between a and x (so x* 6 J)
such that h(x*) = b + 8 ; that is, the graph of h crosses the segment S*T*
at < X*, b + S >. But F is positive at this point, so F(x*, h(x*)) 0,

con t ra ry to the assumpt ion abou t h . Th is p roves tha t h (x ) > b 6 i s

impossible. Similarly, h(x) < b - 8 is impossible, for then the graph of h
would contain a point of ST and at this point F is not zero. Altogether

this shows that h(x) ^ g(x) is impossible. Thus h agrees with g on J.

Now we shal l prove that g is di fferent iable at a. In fact we shal l

p r o v e t h a t

Let F* be the first Taylor polynomial for F at < a, b >.

F»(x,y) = (x - a)F'(a,b) + (y - b)F*(a,b).

(Recal l that F(a,b) = 0.)

Because F2(a,b) ^ 0, we can solve F«(x,y) = 0 for y. Let the result
be y = g*(x). Then

F;(a,b)( 1 4 ) g . ( x ) = + b

F « ( x . = 0

a l l



(To see the relation between this and the geometric argument of p.8-82,

temporari ly Introduce a third coordinate. Then ? - F*(x,y) Is the equation

of the tangent plane T^ to the surface S given by z - F(x,y) at
q = < a, b, 0 >. The Intersection of T^ with the x-y-plane H Is the line
L given by F*(x,y) - 0 which Is the same as y - g*(x). We shall prove that

g* approximates g near a In the sense of 8.3(16), p. 8-3^» rewr i t ten for

one dimension. This proves that L Is tangent to the graph of g as we

claimed on geometric grounds.)

We want to show that |g(x) - g*(x)| goes to zero faster than |x - a| as

X —> a. Given > 0, we must find | > 0 and prov^ the Inequality

iM " g»(x)| < yj|x -

for aU X with I* - a| < I-

F i rs t , choose C > 0 so that

||< X, y > - < a, b >11 < ^

|P(x,y) - F»(x,y)| S ̂  ||< x, y > - < a, b >||

M = , / I + Fi(a,br
F̂ (a,b)̂

W e c a n d o t h i s b e c a u s e F I s d l f f e r e n t l a b l e a t < a , b > .

Now let ! be the smallest of £, «;/M, and 2 5/M.

Let X be any number such that |x - a| < From (14) It follows that

( 1 8 ) | | < X , g * ( x ) > - < a , b > 11 = M | x . a | .

(lythagorean theorem.) Now (18) and M|x-a|<M^ ^ ^ Imply that we can take

y = g*(x) in (17) and get

|F(x, g«(x)) - F«(x, g»(x))| < ^ll< X, g*(x) > - < a, b >||.

Using (15) and (18), this becomes

|F(x, g«(x)| < c(»2|x - a|



From (18) and M|x - a|<M|<2&, we deduce that < x, g»(x) > 6 A .

Since |x - a| < e, g(x) Is defined and < x, g(x) >6 A. Hence the segment

connecting < x, g(x) > to < x, g»(x) > lies In A .
Recall that F(x, g(x)) =0 and apply the mean value theorem.

|F(x, g»(x))| = |F(x, g(x)) - F(x, g*{x))\

= |F'(x,e){g(x) -g»(x))|
(20) = F'(x,©)|g(x) .g»(x)|

> o( |g(x) - g»(*)|.

where © Is between g(x) and g*{x). The last two steps fol low from the

f a c t t h a t F ' > « o n a l l o f A .

Comparing (19) and (20), we have

|g(x) - g»(x)| < »^|x - a|.

Since X was arbitrary except for the requirement |x - a| < \ ^ this proves

(16) . And th is shows tha t g Is d l f fe rent lab le a t a w i th der iva t ive g iven

by (13).

The argument just given applies with minor changes at any point x € I,

s o g i s d l f f e r e n t l a b l e a t a n y p o i n t o f I w i t h

Fi (x, g(x))

As a dlfferentlable function g Is continuous. Hence (21) shows that g*

Is a cozDblnatlon of continuous functions with the denominator never zero, so

g* Is continuous on all of I. We have proved that g Is C^.D

8 . 5 . 2 1 C o r o U a r y. J f F I n t h e t h a o r w i I s a < k < o o ) , t t a a g i s

also c''.

Proof. Assume F Is c''. We shall show by Induotlon on p that g is c'*
for 1 < p < k. Suppose g Is where p < k. Then (21) wdilblts g* as

a o o m b i n a t l o n o f f u n o t l o n s o f c l a s s a n d S i n c e p < k - 1 , t h i s s h o w s

that g* is cP. But then g is



If k Is finite 9 this gives us Induction as far as k, and we conclude

g Is C^, If k Is Infinite, we conclude that g Is for every Integer
p. But this Is what It means to be C® . □

The theorem we have just proved extends to any number of variables. Since

the proof Is about the same as for two variables, we shall only state the result

8.5.23 Theorem* Let B ^ ^ open set in and let F t B —>3R ^ a

Ĉ -function, 1 < k < 00 . Suppose < â , ag, ..., â , b > € B,
F ( a j ^ , a 2 , . . . , a j ^ , b ) = 0 , ^ T h w t

Existence: There exists an open ball U about < a^, a^, a^ > in
jrf' andft c'̂ -fanetlon g t 0—»1R sjwh ̂  g(aĵ ,a2,...,a„) = b wid

( V < * 2 , > € D )

U n i q u e n e s s t I £ V i s g . j . oP^n subse t o f U

< a^, ag, ..., ^ and h t V —> R iS. i. continuous function such that

h(»i,a2,...,a„) = b ^

( V < * 2 ^

t h e n h ^ o n V . □

Once we know that the function g exists and is differentiable, we can

e a s i l y c a l c u l a t e i t s d e r i v a t i v e u s i n g t h e c h a i n r u l e . I f w e d i f f e r e n t i a t e

= 0

with respect to Xj, keeping the other x*s fixed, we get

' 5 * = 0 -

(21) is Just a special case of this formula.



8.6 Mul t ip le in tegrat ion.

•Die ijJea of integrating a function of one variable over a line interval

generalizes in a very natural way to give us integrals of a function of two
variables over a region in a plane and integrals of a function of three

variables over a region in space.

8.6.1 Volume under a surface, iathough the definition of a multiple integral
is purely analytic it is most easily motivated by considerations of geometric
volume just as the ordinary one-dimensional integral is motivated by area.

S u p p o s e t h a t f i s a c o n t i n u o u s

r e a l - v a l u e d f u n c t i o n d e fi n e d o n t h e

p l a n e . L e t S b e a b o u n d e d c l o s e d /
r e g i o n i n t h e p l a n e w i t h b o u n d a r y / /
c o n s i s t i n g o f a fi n i t e n u m b e r o f / /
smooth curves and comers. Such a / ! i i'j /
r e g i o n w e s h a l l c a l l a n o r d i n a r y / ! i j j l /
region. For example, S might be a / | 1/ j
s e m i - c i r c l e , a s i n t h e fi g u r e . We / ^ /
a s s u m e t h e f i s p o s i t i v e a t e v e r y / /
p o i n t o f S . — - — '

T h e g r a p h o f f w i l l b e a

surface in three-space. We want to

k n o w t h e v o l u m e o f t h e s o l i d V w h o s e

base is S, whose top surface is the

part of the graph of f lying over S, and whose side walls are vertical over
t h e b o u n d a r y o f S .

To find this volume we use the same reasoning as we used to find the area

under a curve. First cut the region S up into a large number of ordinary
regions which overlap only along their boundaries. Call them Tg, ., T



O v e r e a c h s t a n d s a s o l i d w i t h b a s e t o p s u r f a c e p a r t o f t h e

graph and sldewalls vertical over the boundary of T^.
S i n c e t h e T * s o v e r l a p o n l y a l o n g b o u n d a r i c i s w h i c h h a v e a r e a z e r o .

A r e a S = A r e a T , + A r e a + . . . + A r e a T .
X c n

Simi lar ly, the sol ids over lap only on surfaces which have volume zero, so

Vol V = Vol Vol Wg + ... + Vol W^.

Let us get inequal i t ies for the volumes of the W*s. Since f is a

c o n t i n u o u s f u n c t i o n o n t h e b o u n d e d c l o s e d s e t i t h a s a m a x i m u m a n d a

minimum value on T^. Let these be and m^, respectively. Then

m ^ A r e a < Vo l A r e a
because contains a solid of fixed height m^^ standing over and

fits inside a solid of fixed height standing over T^.
A d d i n g u p t h e s e i n e q u a l i t i e s , w e g e t

(2) ^ m^ Area < Vol V < Area
The left and right hand sums here are called the lower and upper Riemann sums,

r e s p e c t i v e l y , c o r r e s p o n d i n g t o t h e s u b d i v i s i o n o f S . T h e y a r e a n a l o g o u s t o

the Riemann sums for a one-dimensional definite integral.

If S is carved up into sufficiently small pieces T^, then the left and

right members of (2) will differ by very little, in fact we can make the difference

as small as we please by making the T*s small enough. Hence (2) gives us a

means of calculating Vol V as accurately as we please. Since the same limiting

process comes vtp in many contexts, there is a notation for the unique number

that fits between all the lower sums and all the upper sums. It is

I t is ca l led the double in tegra l o f f over the region S,



Now we sha l l f o rma l i ze some o f t hese i deas .

8.6.3 Definition. A region in the plane will be called ordinary if and only if
it is bounded, closed, and its boundary consists of a finite number of smooth

c u r v e s a n d c o m e r s . T h i s i s n o t a s t a n d a r d t e r m .

8.6.4 Area. The hardest part of the theory behind double integrals is the notion
of area. We shall assume that we can assign to each ordinary region a non-negative
number called its area in such a way that

(a) If an ordinary region S is subdivided into two ordinary regions
T and U which share only boundary points, then

A r e a S = A r e a T + A r e a U .

(b) If two ordinary regions are congruent they have the same area.

(c) A square of unit edge has area one.

It is possible to prove that this can be done, and furthermore that it can be

done in only one way.

Once we have established or assumed the existence of an area function we

can define the double integral in a pur^y analytic way.

8.6.5 The double integral. Let S be an ordinary region in the plane and let
f t S —> H be cont inuous.

For each subdivision of S into ordinary regions Tg, •• •♦ ^ch
overlap only along their boundaries form the Riemann upper sura

0(T^, Tj, .... y =
Where is the largest value of f on T ,̂ and the fttemann lower sum

2̂ V = Z m̂  Area T̂
where m^ is the least value of f on T .̂

It can be proved that every lower sum is less than or equal to every î per
sum, even ̂ en these suras come from different subdivisions. Moreover, by
choosing the T*s small enough we can make



U(T^, Tg, T^) - L(T^, Tg, •••, Tjj)
as small as we please. It follows from the nested Interval principle (p. 4-21)

t h a t t h e r e i s a u n i q u e r e a l n u m b e r I s u c h t h a t

LCTj^, Tg, .... T^) < I< UCTj^, Tg, ..., T^)
for every choice of the subdivision Tg, . . .» This number I is

c a l l e d t h e d o u b l e i n t e g r a l o f f o v e r S a n d d e n o t e d

There are other notations in common use. When x and y are Cartesian coor

d i n a t e s i n t h e p l a n e t h e d o u b l e i n t e g r a l i s c o m m o n l y w r i t t e n

a n d w h e n a f o r m u l a f o r f i n t e r m s o f x a n d y i s a t h a n d i t i s u s u a l l y

w r i t t e n o u t i n t h e i n t e g r a l ; e g . .

JJ ̂  sin xy dx dy.

This notation looks ahead to the fact that double integrals are usually

evaluated by performing two successive ordinary integrations.

T h e p r o o f t h a t u p p e r s u m s a n d l o w e r s u m s a r e e v e n t u a l l y c l o s e t o g e t h e r

is instructive. For a fixed subdivision T^, Tg, ..., T^^

U - L = ̂  Area Tĵ .
Area T^ - D Area S,

where D is the largest of the numbers - m^.

Given £ > 0, i t is poss ib le to choose 8 > 0 so that

|f(p) - f(q)| <

whenever the points p and q are within 8 of one another. Hence, if



r * i

choose the T*s so tha t any two po in ts In the same are w i th in 6 o f one

another we shal l certa in ly have < £/Area S, for a l l i . Then

D < £/Area S, and U - L < 6 . This shows that, in order to make U - L
s m a l l w e r o u s t m a k e t h e T * s s m a l l , n o t i n t h e s e n s e o f a r e a , b u t s m a l l i n t h e

s e n s e o f t h e i r l i n e a r d i m e n s i o n s . I f w e o n l y m a d e i i

them small in area, they could all be long and

thin. Then all of the numbers - m^ might
b e l a r g e .

S o m e t i m e s a m o r e g e n e r a l t y p e o f f t l e m a n n s u m i s i m p o r t a n t . A f t e r c h o o s i n g

a stibdivision of S, pick one point p^ in each part T^ and form the
R i e m a n n s u m

R - ̂  f(p̂) Area T̂ .̂
S i n c e i t i s e a s y t o s e e t h a t R m u s t c o m e b e t w e e n t h e u p p e r a n d l o w e r s u m s

for th is subd iv is ion , tha t i s .

R must be a good approximation to f dA whenever al l the T*s are small.

L < R < U,

Exe rc i se . Le t S be the xu i i t squa re i n ]R ; i e . , S= {<x , y> jO<x , y< l }

Let f(x,y) = xy. Calculate the uppser and lower Riemann sums for f over S
2

us ing the subdiv is ion of S in to n smal l squares g iven by the l ines

x - i/n, y = j/n, i, j = 1, 2, ..., n - 1. Evaluate

x y d x d y.

m



8.6.6 Conversion to an iterated integral. The process of subdividing and

computing Riemann sums is even more impractical for double integrals than it is

for the one dimensional case. Double integrals•are usually evaluated by con

verting them to two successive ordinary integrals.

Take a s imp le case to beg in .

S u p p o s e S i s t h e r e c t a n g u l a r

r e g i o n b e t w e e n t h e y - a x i s a n d t h e

l i n e X - a a n d b e t w e e n t h e x - a x i s

a n d t h e l i n e y = b , w h e r e x a n d

y a r e C a r t e s i a n c o o r d i n a t e s . S a y

t h e i n t e g r a n d i s p o s i t i v e o n S .

T h e n t h e d o u b l e i n t e g r a l

F(x,y) dA

r e p r e s e n t s t h e v o l u m e o f t h e s o l i d

We can also get this volume by the familiar technique of "slicing," We

review i t br iefly. Cut the sol id into thin s l ices by planes paral le l to the

y-z-plane, say x=x^, i-1, 2, ...,n. The volume of the slice between
X = a n d x - i s a p p r o x i m a t e l y

X B(x̂ )

where is the area of the eross-seotlon made by the plane x
Hence t he vo l ume requ i r ed i s abou t

This is a Riemann sum for the integral

B(x) dx.

As the slices are made thinner, the sums (7) converge both to the volume and

to the integral, so the volume is given hy the integral (8).



N o w t h e c r o s s - s e c t i o n a l a r e a f u n c t i o n i t s e l f c a n b e o b t a i n e d a s a n i n t e g r a l .

The area in the plane x - X is given by

B ( A ) = F ( X , y ) d y .
' 0

Putting this together with our previous resialts we have

F(x,y) dA ^ J F(x,y) dy dx
^ 0 ^ 0

w h e r e i t i s u n d e r s t o o d t h a t t h e i n n e r i n t e g r a t i o n i s t o b e c a r r i e d o u t w i t h x

E x a m p l e . T h e d o u b l e i n t e g r a l o f t h e l a s t e x o r c i s e . S i s t h e u n i t s q u a r e .

xy dA -=

iMi
x y d y d x

x y d x
7=0

|xdx = i .

A l t h o u g h t h e a r g u m e n t w e h a v e j u s t g i v e n f o r t h e e q u a l i t y o f a d o u b l e

i n t e g r a l a n d a n i t e r a t e d i n t e g r a l d e p e n d s o n g e o m e t r i c a l c o n s i d e r a t i o n o f v o l u m e ,

i t c a n b e m a d e p u r e l y a n a l y t i c . F u r t h e r m o r e « i t i s v a l i d f o r a l l c o n t i n u o u s

i n t e g r a n d s , t h e y n e e d n o t b e p o s i t i v e . T h e a r g u m e n t c o u l d j u s t a s w e l l h a v e

been made hy slicing the other way, that is, by planes parallel to the x-z-

p l a n e . T h e n o u r c o n c l u s i o n w o u l d b e

F(x,y) dA ' J F(x,y) dx dy
' 0 . ' O

w h e r e i t i s n o w u n d e r s t o o d t h a t t h e i n n e r i n t e g r a t i o n i s c a r r i e d o u t w i t h y

h e l d c o n s t a n t .

I f t h e r e g i o n S i s n o t a r e c t a n g l e w i t h s i d e s p a r a l l e l t o t h e a x e s , t h e

s a m e i d e a s w i l l w o r k , b u t t h e a r e a o f a c r o s s - s e c t i o n d e t e r m i n e d b y a p l a n e

X - x^ will be an integral whose limits may depend on x^.



S u p p o s e S i s t h e t r i a n g u l a r r e g i o n

s h o w n . L e t u s c a l c u l a t e

When we slice in the plane x - x^, the '
section will lie above the segment shown in the figure. It will actually be

a triangle with vertices at < x^, 0, 0 >, < x^, l-x^^, 0 >, and
< x ,̂ 1-x ,̂ x (̂l-x )̂ >, since the intersection of the plane x ̂  x^^ with the
curved surface z - xy happens to be straight. We can find the area methodically

a s a n i n t e g r a l , h o w e v e r . I t i s

T h e s o l i d i n q u e s t i o n e x t e n d s f r o m x = 0 t o x - l . s o t h e o v e r a l l v o l u m e

I x(l - x)2 to = i-

Usually one converts a double integral directly into an iterated integral
without explicit consideration of the cross-sections. The only problem is to

determine the proper limits for the two definite Integrals. When S is the

t r i a n g u l a r r e s i o n i u s t e o n s i d a p a d

F ( x . y ) d y d x .

The large brackets are more often than not omitted. Note that only the region

S enters into the determination of the l imits. Also note that the l imits of

the inner Integral may Involve the variable of the outer integration, but the

limits of the outer integral are numbers (which might appear as letters); they
do not Involve the variables of integration.

In the above problem, if we decided to slice by planes parallel to the

x - z - p l a n e , t h e n x w o u l d b e t h e v a r i a b l e o f t h e i n n e r i n t e e r r a t i o n . T h «



for th© inner integration would be 0 and 1 - y, and the limits of the
outer integrat ion would be 0 and 1.

Suppose S is the triangular region shown ^ ,
here. We have a ohoioe of two ways to convert /
a double integral over S into an i terated

i n t e g r a l . I f w e k e e p x fi x e d a t fi r s t a n d
tt /

integrate with respect to y, then y varies
from 0 to 2x. In the second integration L \ y

/ < ' > o >X v a r i e s f r o m 0 t o 1 . H e n c e

r rJ J F(x,y) dA = F(x,y) dy dx.k ^0

If we start the other way, then y is fixed for the inner integration and x
varies from |y to 1. In the second integration y varies from 0 to 2.

F(x ,y ) dA = Jl F(x,y) dx dy.

It is often necessary to cut the region into pieces in order to represent
a double integral conveniently as an iterated

integral. If S is the parallogram shown

h e r e , t h e n / ; 7

F(x,y) dA = ZrZ^
F(x,y) dx dy

'2
^(*,7) <ty dx.

Ihis somewhat curious notation is often used to avoid ideating the Integrand.

Since we have two ways (and, as we shall see presently, many more) to
convert a doiAde Integral into an iterated Integral, it may happen, and often
does, that one way leads to easier confutations than the other. Therefore, if
you want to compute the value of a douKle integral, it wtu often pay to look



at both ways to convert to an iterated integral. Often a problem starts as an

iterated integral and can be simplified by converting it to a double integral

and then back to an iterated integral the other way. The process of reversing

the order of integration is valid whenever the integrand is continuous and the

region for the corresponding double integral is ordinary. Careful attention

must be paid to the limits of integration when reversing the order of integration.

Always make a diagram of the two-dimensional region.

Example:

r r ^ X d x d y .

W e c a n p e r f o r m t h e i n n e r i n t e g r a t i o n t o g e t

(arc cos J - v/a^-y ) dy.
There is a good deal of work required to finish this. (Integrate the first term

by parts.) However, the original integral can be converted to

- X d y d x .

The first integration is now easy. We get

xv/?T7dx =

We shall now sketch briefly the anal3rtic argument behind the conversion of

a double integral into an i terated integral. We restr ict ourselves to the

particularly easy case of a rectangular region with sides paraUel to the axes.
The definition of a double integral takes no position on how the region is to

be cut up into smaller regions. Any way will do as long as all the little

regions are small in their longest dimension. One obvious way to subdivide S

is by a grid of lines parallel to the axes.

Let x = Xj^, X = 3^, ..., X = be the lines of division parallel to the



y-axls, and lot y = yj^, y = yg, y = y„.i
b e t h e l i n e s p a r a l l e l t o t h e x - a x l s . P a t

^ b . y , ' « . y „ - d -
A n I n t e r m e d i a t e f t l e m a n n s u m f o r t h e d o u b l e

I n t e g r a l m a y b e f o u n d b y t a k i n g t h e a r e a o f e a c h

l i t t le rectangle, mul t ip ly ing by the value of

F a t t h e u p p e r r i g h t c o r n e r o f t h e r e c t a n g l e .

a n d a d d i n g . T h i s g i v e s

^ F(x̂, y - x̂.3̂)(y - yX a J

If we sura this doubly-Indexed set of numbers first by 1 then by j we get

^ ' 2L (Z. - vi>) - yj-i)-
J ^

H e r e t h « I n n e r s u n I s a R l e n a i m s u m f o r c a l o u l a t l n z

F(x, y.) dx.

^ ( r
T h e l a t t e r I s a R l e m a n n s u m f o r c a l c u l a t i n g

F(x.y) dxl dv

Thus R lemann sums fo r the doub le In tee ra l a re c lose to R lemann sums fo r the

I t e r a t e d I n t a fi r r a l . H m i fl a

r d r b
F ( x . v ) d A = F ( x . v ) d x d v .

8.6.9 Polar coordinates. Another systematic way to subdivide a region is by a
fine grid of polar coordinate lines. This will be a particularly useful way

w h e n t h e r e s l o n 3 i s c o n v a n l e n t l v d A s e r l b a d i n n o l a i ? e o o - m i i i n a ' K A f t .



r ao i aen t suppose t ha t S i s bounded by t he

r a y s a t a n g l e s ^ a n d . a n d t h e

c i r c u l a r a r c s a t d i s t a n c e s c a n d d f r o m

t h e o r i g i n . L e t t h e i n t e g r a n d b e f « S — > 3 R .

We know that f can be expressed in terms

of the polar coordinate functions p and

e ; say f = G(/3, G).

We subdivide the region S with rays at B ~ 0^, 0= •••♦ © - ®n 1*
and viith circular arcs at p = p-^, p = p = Put Sq = «,

® n " P o ~ ® » P n ~ s u m u s i n g t h e c o m e r v a l u e f o r
f o n e a c h p i e c e . T h e n

Where is the area of the quasi-rectangular region bounded the lines

© - ©j.2^ and O - and the circular arcs 1 and P ' p^-
T h e a r e a o f t h i s n i e c e i s

^ i j = I ( - A . , ' )
= P u i > -

(Recall that the area of a pie-shaped piece of a circle is one-half the central
angle (in radians) times the square of the radius.) If we put this into (10)
and take the sum on j first, we get

« = Z l < / = i - - P i . i )
H e r e t h e i n n e r s u m i s a m A T n a r t n a i r m

G ( A . © ) d e



« Z 2 ^ Pi-l) (f - fi-1^-
If the subdivision Is fine enoui?h, | (/̂ i "♦* P±Jl̂  ̂  nearly so

The la t te r I s a R le raann sum fo r

Ĝ(̂ , S) d©ld̂
If the errors at each step are carefully accounted for, this becomes a proof

[Jf dA = j'̂ pa(.p,9) dQdf3.
We can do the Integrations In the other order If we want and the result Is

The mnemonic Is "In polar coordinates, dA - /9dp d©In the non-rigorous,
but sometimes helpfva, formulation of calculus with Infinitesimals, one says
that the little quasi-rectangular regions, when made Infinitely small, become
true rectangles with dimensions and pie and area pdpde. Compare
this with "In Cartesian coordinates, dA - dxdy,"

Example. Find the Integral of p̂ sln 0 over the first quadrant of the
unit disk. Change It to an Iterated Integral In ^
p o l a r c o o r d i n a t e s . T h e l i m i t s a r e 0 a n d 1 0

f o r a n d 0 a n d T T j z f o r 0 . S o w e

p^slnO p dedf> - J do



I t i s n o t n e c e s s a r y t h a t t h e b o u n d a r i e s o f t h e r e g i o n o f i n t e g r a t i o n b e

polar coordinate lines, we can convert to an iterated integral as long as we

c h o o s e t h e l i m i t s o f i n t e g r a t i o n c o r r e c t l y . A s b e f o r e , t h e v a r i a b l e f o r t h e

second (outer) integration may appear in the l imits of the first integration,

b u t n e i t h e r v a r i a b l e o f i n t e g r a t i o n s h o u l d a p p e a r i n t h e l i m i t s o f t h e o u t e r

E x a m p l e . F i n d t h e a r e a s w e p t o u t b y t h e r a d i u s i n

generating one turn of Archimedes* spiral, p ~ a ^
It is easy to see from the definition of the double \ y/
i n t e g r a l t h a t t h e a r e a o f S i s j u s t t h e i n t e g r a l

o f t h e c o n s t a n t f u n c t i o n 1 o v e r S , S i n c e t h e

c u r v e i s g i v e n i n p o l a r c o o r d i n a t e s , w e c o n v e r t t o a n i t e r a t e d i n t e g r a l i n

polar coordinates. Here p varies from 0 to a©, and then © varies
f r o m 0 t o 2 I T . S o t h e r e q u i r e d a r e a i s

c t > y "
T h e i n t e g r a n d o f a d o u b l e i n t e g r a l m a y b e s p e c i fi e d i n t e r n s o f C a r t e s i a n

c o o r d i n a t e f u n c t i o n s , b u t n e v e r t h e l e s s i t m a y p a y t o c o n v e r t i t t o a n i t e r a t e d

i n t e g r a l u s i n g t h e p o l a r c o o r d i n a t e g r i d . I n m a l c L n g t h i s c o n v e r s i o n i t i s

i m p o r t a n t t o r e a l i z e t h a t t h e i n t e g r a n d m u s t b e e x p r e s s e d i n t e r m s o f p o l a r

c o o r d i n a t e f u n c t i o n s . R e m e m b e r t h a t i n t r i n s i c a l l y t h e i n t e g r a n d i s s u p p o s e d

t o b e a f u n c t i o n f r o m S t o B d i r e c t l y . T h e f a c t t h a t i t i s p r e s e n t e d i n

t e r m s o f x a n d y d o e s n o t a l t e r t h e s i t u a t i o n .

Example.. Find the double integral of + y^ over the upper half of the
u n i t d i s k .

We could set this up as an iterated integral

u s i n g t h e C a r t e s i a n g r i d .

f + l n 5 -



M

The other integral looks no better. But if we notice that the integrand will

be simply /o when expressed in polar coordinates, we convert to polar coor

d i n a t e s a n d g e t

Switching from Cartesian to polar coordinates enables us to evaluate the

o n e d i m e n s i o n a l d e fi n i t e i n t e g r a l

r C D 2
e"* dx

wh ich i s ve ry impor tan t i n p robab i l i t y theory. Ca l l t h i s i n teg ra l I . ( I t i s

known that the indefinite integral of e"*̂  cannot be expressed as a combination
of elementary functions, so none of the oz*dinary methods can possi^bly evaluate I.)

Now this last integral is the iterated integral corresponding to the double

integral of e" over the entire first quadrant. Since this region is
unbounded, it is not an ordinary region and our theory does not apply directly.
T h i s i s a n . double integral, and has to be considered as a limit of

double integrals over large ordinary regions. The essential ideas are the same
as in one dimension. (See p. 4-55.) One cannot convert improper double integrals
to iterated integrals freely, but as is frequently the case, everything works out

nicely when the integrand is everywhere positive as in this case. Hence we have

where S i s t he i nfin i te fi rs t quadran t .

rmi
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Now we convert this double integral to an iterated integral in polar

c o o r d i n a t e s . W e g e t

. l l f c ^r = e ^ /D dp d©.

The p which has appeared in the integrand is just what we need to be able to

c o m p l e t e t h e e v a l u a t i o n .

2 ®

H e n c e A t n i l y r e m a r k a b l e r e s u l t .

8.6.11 The directed double integral. The Riemann integral on the line is

defined in a manner strictly analogous to the definition of the double integral.

I t i s u s u a l l y r e p l a c e d v e r y s o o n t q r t h e d i r e c t e d i n t e g r a l o n t h e l i n e . T h i s i s

a special case of the line integral discussed in chapter seven. The essential

feature is that integration is conceived as having a direction along the line

and the sign of an integral changes if the direction of integration is reversed.

F(x) dx = - j F(x) dx.

There is an analogous directed double integral in which one assigns an

orientation to the region of integration. When the orientation is reversed, the

sign of the integral changes. ESxcept for the sign, the directed double integral

agrees with the double integral we have been studying.

There is also a theory of double integrals where the region of integration

nay be on a curved surface. These are called surface integrals and they are

most commonly taken as directed. Just as the most common form of line integral

on curves is directed; that is, they reverse sign when the orientation of the

region of integration is reversed. We shall not study them here.



8 - 1 2 0

8.6.12 Surface areas. A useful application of double integrals is to the

c o m p u t a t i o n o f s u r f a c e a r e a s .

Let Cartesian coordinates be chosen as usual in space, and imagine the

x-y-plane to be horizontal. By vertical projection we mean the linear map

< r , s , t > < r , s , 0 > .

This drops (or l i f ts) points vert ical ly into the x-y-plane. We want to

d e t e r m i n e t h e e f f e c t o f t h i s t r a n s f o r m a t i o n o n s u r f a c e a r e a .

Consider first a non-vertical plane P. Non-vertical means it is the graph

of some function of degree at most one. Let S be an ordinary region in

and let S* be its vertical projection into the x-y-plane. If P is

horizontal, then S* is congruent to S and therefore has the same area as S,

Suppose that P is not horizontal. Then P is given by an equation

z = a + bx + cy

where b and c are not both zero. P meets the x-y-plane in a l ine L.

If S is a rectangular region in P with two sides parallel to L, then

S' is also rectangular with two sides parallel to L. Suppose the sides of

S para l le l to L have length h and the others length k . Then S* has

d i m e n s i o n s h a n d k * w h e r e k * = k c o s

and <x is the angle between P and the

h o r i z o n t a l . ( T h e fi g u r e s h o w s a c r o s s - .

section in a plane perpendicular to L.)

H e n c e w e h a v e y k I ■
! ;

Area S* (cos o< ) Area S.

P r o m t h i s i t f o l l o w s t h a t t h e s a m e r e l a t i o n

relation holds for any ordinary region S in P, because any such region can be
almost filled with tiny squares having sides parallel and perpendicular to L.
The projections of these squares will almost fill S', etc. Putting the factor
cos on the other side of the equation we have



Ar®a S = —^ Area S*
c o s 0 (

f o r a n y o r d i n a r y r e g i o n S a n d i t s i m a g e S * .

The triples <0, 0, 1 > and < -b, -c, 1 >, regarded as column vectors,

are orthogonal to the x-y-plane and the plane P, respectively. Since the

a n g l e b e t w e e n t w o p l a n e s i s t h e a n g l e b e t w e e n t h e i r n o r m a l s .

/l + b^ + t?

S o t h e r e l a t i o n b e t w e e n a r e a s b e c o m e s

(13) Area S = /l + b^ -i- c^ Area S* .
Now consider a C -̂function f defined on all or part of the x-y-plane.

and let S* be an ordinary region in the domain of f. The graph G of f

is a smooth surface in space. The set S of points of G lying over (or under)

points of S* form a two-dimensional region on G which we may appropriately
call an ordinary region on G, since it will be bounded by a finite number of

s m o o t h c u r v e s a n d c o m e r s . W e w a n t t o fi n d t h e a r e a o f S .

Divide S* into small ordinary regions T^ '̂, T '̂, ..., T^ '̂, each so small
that df is practically constant on each of them. (This means that both partial

derivatives of f are practically constant on each T '̂.) Above each T '̂
is an ordinary region Tj^ on G.

At a point p of G there is a tangent plane. Its equation is

a = a + ̂ (p*) X + ||(p*) y
where p* is the projection of p and a is a constant whose value is

irrelevant at the moment. If we let p vary within one of the regions T̂ ,
p' will vary in T^'. Our choice of the T's then shows that aU of the
tangent planes (1 )̂ are virtually parallel. Thus T^ is almost on a plane.
I t s e e m s p l a u s i b l e t h e r e f o r e t h a t
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( 1 5 ) A r e a T ^ ^ ( | ^ p , ) ) 2 ,
no matter how p* is chosen In . (This is in accordance with (13).)
If we add up these inequalities for all indices i, we get

( 1 6 ) A r e a S r u t ( v r ^ V -

Here p^* is just any point chosen in T.*. This sura is a Rieroann sum for

As the regions T^* are made smaller, the tangent planes (1^) at points
within a single T^ become more nearly parallel, hence the errors in the
approximations (15) become relatively less and the total error in (16) becomes
arbitrarily small. We conclude that the area of S is given by the integral (17)

A few words are in order about the argument for (15). It cannot be made

rigorous since we do not have a definition of surface area. How should we define

it? Perhaps we should just define it in terms of the double integral (1?).

But we cannot make up definitions for a concept like surface area arbitrarily.

If mathematics is to have any relevance to the real world, we must be sure that

the technical definitions of concepts which, like surface area, purport to model

reality do have a plausible relation to our perceptions. Hence, i f a definit ion

of surface area is offered and it turns out that we cannot justify the foregoing

arguments with it, there would be good reason to suspect that the definition is

i n a p p r o p r i a t e . Te c h n i c a l d e fi n i t i o n s f o r s m o o t h s u r f a c e s h a v e b e e n w o r k e d o u t

and it can be shown that there is really only one way to assign area to each

ordinary region on a smooth surface so that various plausible requirements are

satisfied. For rough surfaces, for example, surfaces that are the graphs of

m e r e l y c o n t i n u o u s f u n c t i o n s , t h e s i t u a t i o n i s n o t v e t c o m o l e t e l v u n d e r s t o o d .



A s a n e x a m p l e w e s h a l l c a l c u l a t e t h e a r e a o f a s p h e r e , s a y t h e s p h e r e w i t h

e q u a t i o n

F i r s t w e r e s t r i c t o u r s e l v e s t o t h e u p p e r h e m i s p h e r e . S i n c e t h a t i s n o t a n

ordinary region on the graph of a c'"-function, we restrict further to the
part I jr ing over the disk of radius b (< a) centered at the origin. This is

an ordinary region on the graph of the -function

f = sfJTJT/.

a n d w e w a n t

- (ff -
taken over the small disk. The integrand sin5)lifies to a/f. Since

f =

w e c o n v e r t t o a n i t e r a t e d i n t e g r a l v i a t h e p o l a r c o o r d i n a t e g r i d . W e

> d p d © = Z w ^

= 27ra (a - /a^ - b^)

Now we l e t b —> a and we f i nd t ha t t he a rea o f t he hem isphe re i s 2 TTa .
2T h e a r e a o f t h e w h o l e s p h e r e i s 4 7 r a , a f a m i l i a r r e s u l t .

We c o u l d h a v e t a k e n t h e i n t e g r a l f r o m t h e b e g i n n i n g o v e r t h e d i s k i n t h e

plane of radius a, but that would have been an improper integral since the

integrand isn't defined at boundary points and is unbounded as we approach the

boundary. We did what one always does in dealing with improper integrals,

namely, integrate over a slightly smaller region and take the limit as the

region gets larger. In simple cases the intermediate steps are usually elided.




