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1 Introduction

Linear algebra deals with the study of vector spaces and linear transformations between
them. These transformations can be represented as matrices, and various properties of a
linear transformation are reflected in the properties of its corresponding matrix. When the
elements of a matrix are replaced by random variables, tools from probability theory can
be used to study the resulting properties of these matrices. This paper presents a survey
of several results in random matrix theory, the study of spectral properties of matrices
with random elements, and analyzes two families of random matrices in a unified way. To
motivate our discussion, we begin with three examples:

Example 1.1 (Nuclear Physics [18]). Consider the nucleus of a large atom (e.g. Uranium-
238). We are interested in determining the energy levels of this nucleus. From quantum
mechanics, the nuclear energy levels En are given as the eigenvalues of the Hamiltonian
operator H of the system, Hψn = Enψn. Unfortunately, for large atoms, the Hamiltonian H
cannot be explicitly computed and so we cannot explicitly determine its spectrum. However,
we may instead model the system by approximating the infinite-dimensional Hilbert space
of wave functions with a large finite-dimensional space, and approximating H by a matrix
operator on this space with random elements. We may then study local statistics of the energy
levels, such as their pairwise joint distributions or distributions concerning the spacings
between them, using this model. By imposing conditions on the joint distribution of the
matrix elements based on the symmetries of the system, we find that the local statistical
properties of the eigenvalue distributions of these random matrix models closely match those
of observed nuclear energy levels in large atoms.

Example 1.2 (Wireless Communications [27]). Consider the transmission of information
over a wireless communication channel. The relation between a vector of transmitted data
x and received data y can be modeled by a linear channel y = Hx+n, where H is a random
channel matrix and n is a vector of random Gaussian noise. An information theoretic
quantity of interest is the channel capacity, an upper bound on the rate of information
transmission over the channel. Suppose that x ∈ Cm and y ∈ Cn, and the matrix HH∗ has
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eigenvalues λ1, . . . , λn. Let FH(x) = 1
n ·#{λi ≤ x} be the cumulative distribution function

of the probability mass function of these eigenvalues. Then, under suitable assumptions on
the distributions of x and H, the channel capacity is given by the expected value of

n

∫ ∞
0

log
(

1 +
nE[‖x‖2]
kE[‖n‖2]

x

)
dFH(x)

over the distribution of the channel matrix H. In particular, the channel capacity is depen-
dent on the global distribution FH of the eigenvalues of HH∗.

Example 1.3 (Financial Portfolio Optimization [16, 21]). Consider a collection of n stocks.
We are interested in understanding the risk associated to a portfolio of these stocks and
in constructing portfolios of low risk. If we model the return of each stock as a random
variable ri and consider the covariance matrix C with entries Cij = Cov(ri, rj), then the
risk associated to a portfolio p = (p1, . . . , pn) where pi is the amount invested in stock i is
given by ptCp. Low risk portfolios can be selected to have large components in the directions
of eigenvectors of C with the lowest eigenvalues. However, by estimating C using the sample
covariance matrix of observed returns for each stock, the noise in the sample matrix can
cause us to misidentify the eigenvectors corresponding to the lowest eigenvalues of C and
to underestimate the risk associated with the chosen portfolio when n is large. We may use
properties of the global eigenvalue distribution of the random sample covariance matrix to
devise more accurate methods of portfolio selection and adjust for the noise factor in the
computation of risk.

There exists a body of research pertaining to each of these applications of random matrix
theory. It is not the goal of this paper to discuss the details of these applications; we refer
the interested reader to the listed references. We present these examples as an illustration
of the diversity of the range of applications of this theory and as motivation for the specific
families of random matrices and the specific properties of their eigenvalue distributions that
we will examine. In particular, we will focus on two families of random matrices, defined as
follows:

Definition 1.4. Let {α(n)
ij }n∈N,1≤i≤j≤n and {β(n)

ij }n∈N,1≤i<j≤n be i.i.d. random variables,
normally distributed with mean 0 and variance 1. Let Wn be an n × n matrix for each
n, with diagonal entries (Wn)ii = α

(n)
ii for 1 ≤ i ≤ n, above-diagonal entries (Wn)ij =

1√
2
(α(n)
ij + iβ(n)

ij ) for 1 ≤ i < j ≤ n, and below-diagonal entries (Wn)ij = 1√
2
(α(n)
ij − iβ(n)

ij )
for 1 ≤ j < i ≤ n. We call {Wn}n∈N the Gaussian Unitary Ensemble (GUE).

Definition 1.5. Let p ≥ 1, and let {α(n)
ij }n∈N,1≤i≤n,1≤j≤bpnc and {β(n)

ij }n∈N,1≤i≤n,1≤j≤bpnc
be i.i.d. random variables, normally distributed with mean 0 and variance 1. Let Yn be an
n × bpnc matrix for each n, with entries (Yn)ij = 1√

2
(α(n)
ij + iβ(n)

ij ), and let Mn = YnY
∗
n .

We call {Mn}n∈N the Wishart Ensemble with parameter p.

We note that both families of matrices are Hermitian, and that the matrices of the Wishart
Ensemble are, in addition, positive semi-definite. The GUE is relevant as a matrix model for
nuclear energy levels under specific symmetries in Example 1.1, while the Wishart Ensemble
is the model of interest in Examples 1.2 and 1.3.

All three of the examples above deal with random matrices of large dimensionality. In
single-variate statistics, large collections of random variables are analyzed using limit theo-
rems such as the Law of Large Numbers and the Central Limit Theorem. The goal of this
paper is to develop similar limit theorems for spectral properties of interest for the GUE and
Wishart Ensemble, as the matrix size tends to infinity. Our examples motivate the study
of the limit theorems for two distinct spectral properties: the global distribution of eigen-
values, as relevant to Example 1.2, and the local statistics of the eigenvalue distribution,
as relevant to Example 1.1. We will address these properties separately in the subsequent
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sections. We will see that the assumption of a normal distribution in Definitions 1.4 and
1.5 is not necessary for our study of the global eigenvalue distribution, but we will rely on
this assumption when we turn to the examination of the local statistics.

A theme of this paper is the unified derivation of our results for the GUE and Wishart
Ensemble, the studies of which had historical origins in different fields of application. Each
section of the paper takes advantage of a similarity between the two families of matrices
to derive a general result, which is then specialized to the GUE and Wishart cases. In
Section 2, we prove the existence of a limit law for the global empirical distribution of
eigenvalues for a class of general band matrices, using a combinatorial and graph theoretic
approach. In Section 3, we use a change of variables formula to derive the form of the
joint density function for eigenvalues of matrix distributions invariant under conjugation by
unitary matrices. Finally, in Section 4, we compute a local correlation function for matrix
eigenvalues in terms of orthogonal polynomials and derive a limit law for this function in
the cases of the GUE and Wishart Ensemble with p = 1.

2 Convergence of the Empirical Distribution of Eigen-
values

We prove in this section the convergence in probability of the empirical distribution of
eigenvalues for a class of general band matrices, and we specialize the result to the GUE and
Wishart Ensemble by an explicit computation of the limit distribution. The result was first
proven for the GUE by Wigner in [28] and [29], and we will follow Wigner’s general strategy
using the method of moments, with the generalizations provided in [2]. Our presentation
draws on [1] and [2]. The class of band matrices we choose to work with is much more
general than what is needed for the GUE and Wishart Ensemble—we do not require α(n)

ij

and β(n)
ij from Definitions 1.4 and 1.5 to have normal distributions, or even to be identically

distributed. Specifically, we will consider a class of matrices Xn according to the following
definition:

Definition 2.1. Let s : [0, 1]× [0, 1]→ [0,∞) be a symmetric bounded measurable function
with discontinuity set of measure zero. Let {ξ(n)

ij }n∈N,1≤i,j≤n be a collection of random
variables with the following properties:

1. ξ(n)
ii is real-valued for all i and ξ(n)

ij is complex-valued for all i 6= j.

2. For each n, {ξ(n)
ij }1≤i≤j≤n is independent.

3. For all i 6= j, ξ(n)
ij = ξ

(n)
ji .

4. E[ξ(n)
ij ] = 0 for all i, j.

5. E
[∣∣∣ξ(n)

ij

∣∣∣2] = s
(
i
n ,

j
n

)
for all i, j.

6. For each k ∈ N, supn,i,j E
[∣∣∣ξ(n)

ij

∣∣∣k] <∞.

For each n ∈ N, let Xn be the matrix with Xn(i, j) = 1√
n
ξ

(n)
ij .

In particular, the GUE scaled by 1√
n

satisfies this definition with s ≡ 1. The primary
concern of this section is the following notion of an empirical eigenvalue distribution:
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Definition 2.2. Suppose that Xn has eigenvalues λ1 ≤ . . . ≤ λn. The empirical distribu-

tion of eigenvalues of Xn is the counting measure Ln =
1
n

n∑
i=1

δλi
. The mean empirical

distribution of eigenvalues is Ln = ELn.

With this notation, Ln is a random measure over our probability space such that Ln(S) is
the fraction of eigenvalues of Xn contained in the set S. Ln is a fixed measure determined
by our matrix class {Xn}, so that Ln(S) is the expected fraction of eigenvalues in S for
a random matrix from our matrix class. The central result of this section is the following
proposition:

Proposition 2.3. There exists a measure µ of bounded support, symmetric about 0, and
uniquely defined by its moments, such that Ln converges weakly, in probability, to µ. That
is, for any f ∈ Cb(R) and any ε > 0,

lim
n→∞

P
(∣∣∣∣∫ f dLn −

∫
f dµ

∣∣∣∣ > ε

)
= 0.

Taking f to be a continuous approximation of an indicator function for an interval S, this
proposition tells us that for large n, Ln(S) ≈

∫
S
dµ with high probability, i.e. the fraction

of eigenvalues of Xn contained in S is approximately the integral of a fixed density function
over S. Visually, we may view this result as stating that a histogram of eigenvalues of Xn

will, with high probability, converge in shape to the graph of a fixed density function. We
will prove Proposition 2.3 in two steps in Sections 2.1 and 2.2 and explicitly compute the
limit measure µ for the GUE and Wishart Ensemble in Section 2.3.

2.1 Convergence in moment of the mean empirical distribution Ln

Our proof of Proposition 2.3 is based on a computation of the moments of Ln using a
combinatorial analysis. We will use the following definitions:

Definition 2.4. An n-path of length k is a (k + 1)-tuple of indices i = (i1, i2, . . . , ik+1) ∈
{1, . . . , n}k+1. The path is closed if ik+1 = i1. Let l(i) = k be the length and w(i) =
#{i1, . . . , ik+1} be the number of distinct indices of the path i. Let us consider the path
i = (i1) of a single index to be a closed path with l(i) = 0 and w(i) = 1. For any ordered pair
(i, i′) of indices, let fi(i, i′) = #{j | ij = i, ij+1 = i′}. Let bi(i, i′) = #{j | ij = i′, ij+1 = i}
if i 6= i′ and bi(i, i′) = 0 if i = i′.

Definition 2.5. A Wigner n-path is a closed n-path i with the following properties:

1. For each j = 1, . . . , k, fi(ij , ij+1) = 1 and bi(ij , ij+1) = 1.

2. w(i) = l(i)
2 + 1.

We may think of an n-path of length k as a walk of k steps along the edges of the complete
undirected graph of n vertices. Then fi(i, i′) and bi(i, i′) are the numbers of times the walk
traverses the edge i → i′ in the forward and backward directions respectively. (If i = i′,
we count a traversal of this self-loop as a traversal in the forward direction only.) The first
condition of the definition of a Wigner n-path specifies that the path traverses no self-loops
and traverses each edge along the path exactly twice, once in each direction. Then the
number of undirected edges traversed by the Wigner n-path is l(i)

2 , and hence the second
condition specifies that the subgraph of undirected edges traversed by the Wigner n-path is
a tree.

We consider an equivalence relation on paths under permutation of the vertex labels:
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Definition 2.6. Two paths i and i′ are equivalent if there is a bijection ϕ : N → N that
maps i to i′ when applied componentwise. Let [i] denote the equivalence class of i. As paths
in an equivalence class have the same length and number of distinct indices, let l([i]) = l(i)
and w([i]) = w(i). Let Ck be the set of equivalence classes of closed paths of length k and
Wk ⊂ Ck be the set of equivalence classes of Wigner paths of length k.

We note that this notion of equivalence does not make reference to the size n of the index
set, so an equivalence class C ∈ Ck contains an infinite number of paths, and the n-paths
belonging to C will be denoted as C ∩ {1, . . . , n}k+1.

Lemma 2.7. The moments of Ln satisfy

lim
n→∞

∫
xkdLn = lim

n→∞

1
nk/2+1

∑
C∈Wk

∑
i∈C∩{1,...,n}k+1

k∏
j=1

s
(
ij
n ,

ij+1
n

)1/2

, (1)

if the limit on the right exists. In particular, limn→∞
∫
xkdLn = 0 if k is odd.

Proof. Letting λ1 ≤ . . . ≤ λn be the eigenvalues of Xn,∫
xkdLn = E

[
1
n

n∑
i=1

λki

]

= E
[

1
n

trXk
n

]
=

1
n

n∑
i1,...,ik=1

E[Xn(i1, i2)Xn(i2, i3) . . . Xn(ik, i1)]

=
1

nk/2+1

∑
C∈Ck

∑
i∈C∩{1,...,n}k+1

E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

]
.

If Ei =
{

(i, i′) | i ≤ i′, (i, i′) = (ij , ij+1) or (i′, i) = (ij , ij+1) for some j
}

is the set of edges
traversed by any closed path i, then

E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

]
=

∏
(i,i′)∈Ei

E
[(
ξ

(n)
ii′

)fi(i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)]

by the independence condition on {ξ(n)
ij }i≤j . Therefore, since each ξ

(n)
ij has mean zero,

E[ξ(n)
i1i2

. . . ξ
(n)
iki1

] = 0 for any i that traverses an edge only once. Also, by the bounded

moment condition on the ξ(n)
ij ,∣∣∣∣∣∣

∏
(i,i′)∈Ei

E
[(
ξ

(n)
ii′

)fi(i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)]∣∣∣∣∣∣ ≤
∏

(i,i′)∈Ei

E
[∣∣∣ξ(n)

ii′

∣∣∣fi(i,i′)+bi(i,i′)] < A[i]

for some constant A[i] depending on the equivalence class of i. If C is an equivalence class
of paths for which l(C) = k and w(C) = m, then there are n(n− 1) . . . (n−m+ 1) paths in
C ∩ {1, . . . , n}k+1. Thus, if m < k

2 + 1, then

lim
n→∞

∣∣∣∣∣∣ 1
nk/2+1

∑
i∈C∩{1,...,n}k+1

E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

]∣∣∣∣∣∣ ≤ lim
n→∞

n(n− 1) . . . (n−m+ 1)
nk/2+1

·AC = 0.

On the other hand, if each edge in Ei is traversed at least twice, then i traverses at most k
2

edges, and hence m ≤ k
2 + 1. Equality holds when each edge is traversed exactly twice and
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w(i) = l(i)
2 + 1, i.e. the subgraph traversed by i is a tree. A path that traverses each edge of

a tree exactly twice must traverse each edge once in either direction, so i is a Wigner path.
Thus

lim
n→∞

∫
xkdLn = lim

n→∞

1
nk/2+1

∑
C∈Wk

∑
i∈C∩{1,...,n}k+1

∏
(i,i′)∈Ei

E
[
ξ

(n)
ii′ ξ

(n)∗
ii′

]
,

if the limit on the right exists. As E
[
ξ

(n)
ii′ ξ

(n)∗
ii′

]
= E

[∣∣∣ξ(n)
ii′

∣∣∣2] = s
(
i
n ,

i′

n

)
, this gives the

desired result. If k is odd, then Wk is empty, so the limit is 0.

Let us recall the following solution to the classical Hamburger moment problem, whose proof
can be found in [23]:

Lemma 2.8. Given a sequence of real values {mk}∞k=0, there exists a Borel measure µ with
moments

∫∞
−∞ xkdµ = mk if and only if the k × k Hankel matrix {hij}0≤i,j≤k−1 given by

hij = mi+j is positive semi-definite for each k.

These lemmas are sufficient to show that the mean empirical eigenvalue distributions Ln
converge in moment to a fixed measure µ:

Proposition 2.9. There exists a Borel measure µ of bounded support, symmetric about 0,
such that for all k ≥ 0,

lim
n→∞

∫
xkdLn =

∫
xkdµ.

Proof. Let us fix C ∈ Wk with m = k
2 + 1 = w(C). Let iC ∈ C be the Wigner path such

that the distinct indices of iC , in the order in which they are visited, are 1, 2, . . . ,m. Define
a function fC : [0, 1]m → [0,∞) by fC(x1, . . . , xm) =

∏k
j=1 s(xiCj , xiCj+1

)1/2 if k ≥ 1, or
fC(x1) = 1 if k = 0. Then fC is bounded with discontinuity set of measure zero, because
the same properties hold for s and iCj 6= iCj+1 for any j if iC is a Wigner path. So fC is
Riemann integrable, and we have∫ 1

0

. . .

∫ 1

0

fC(x1, . . . , xm)dx1 . . . dxm = lim
n→∞

1
nm

n∑
x1=1

. . .

n∑
xm=1

fC
(
x1
n , . . . ,

xm

n

)
= lim
n→∞

1
nm

n∑
x1,...,xm=1
x1 6=...6=xm

fC
(
x1
n , . . . ,

xm

n

)
,

where the second equality holds because fC is bounded. But by the definition of fC ,

n∑
x1,...,xm=1
x1 6=...6=xm

fC
(
x1
n , . . . ,

xm

n

)
=

∑
i∈C∩{1,...,n}k+1

k∏
j=1

s
(
ij
n ,

ij+1
n

)1/2

,

which is the quantity appearing on the right hand side of (1) in Lemma 2.7. Thus the limit
in Lemma 2.7 exists, and we have

lim
n→∞

∫
xkdLn =

∑
C∈Wk

E[fC ]

for even k, where E[fC ] denotes the average value of fC over [0, 1]m. For each n, the k × k
Hankel matrix of moments for Ln as defined in Lemma 2.8 is positive semi-definite for all
k. As all moments of Ln converge as n → ∞, the limits of these k × k Hankel matrices as
n → ∞ exist and must also be positive semi-definite for all k. Hence there exists a Borel
measure µ whose moments are the limits of those of Ln, by Lemma 2.8.
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To show that µ has bounded support, let us compute the size of Wk. Consider the map
ϕ : Wk → Zk+1 such that ϕ([i])1 = 0, and ϕ([i])j+1 = ϕ([i])j + 1 if (ij , ij+1) is the first
traversal of that edge in i and ϕ([i])j+1 = ϕ([i])j − 1 if (ij , ij+1) is the second traversal
of that edge in i, for each j = 1, . . . , k. Then ϕ([i])k+1 = 0 and ϕ([i])j ≥ 0 for all j,
i.e. ϕ([i]) is a Dyck path. It is straightforward to verify that ϕ is a bijection between
Wigner paths and Dyck paths, the latter enumerated by the Catalan numbers. Hence, for
even k, |Wk| = 1

k/2+1

(
k
k/2

)
≤ 2k. Together with the bound E[fC ] ≤ (‖s‖1/2∞ )k, we obtain

that limn→∞
∫
xkdLn ≤

(
2(‖s‖1/2∞ )

)k
, so µ is supported on

[
−2(‖s‖1/2∞ ), 2(‖s‖1/2∞ )

]
. It is

symmetric about 0 because its odd moments are 0 by Lemma 2.7.

2.2 Convergence of the empirical distribution Ln

To conclude the proof of Proposition 2.3, we extend our notion of path equivalence to an
equivalence relation on pairs of paths:

Definition 2.10. Two ordered pairs of paths (i, i′) and (j, j′) are equivalent if there is a
bijection ϕ : N → N that maps i to j and i′ to j′ when applied componentwise. Let [(i, i′)]
denote the equivalence class of (i, i′). Let Pk be the set of equivalence classes of pairs of
closed paths of length k.

The following lemma shows convergence in probability of the moments of Ln to those of Ln:

Lemma 2.11. For all ε > 0 and k ≥ 0,

lim
n→∞

P
(∣∣∣∣∫ xkdLn −

∫
xkdLn

∣∣∣∣ ≥ ε) = 0.

Proof. As E
[∫
xkdLn

]
=
∫
xkdLn, Chebyshev’s inequality gives

P
(∣∣∣∣ ∫ xkdLn −

∫
xkdLn

∣∣∣∣ ≥ ε) ≤ 1
ε2

E

[(∫
xkdLn −

∫
xkdLn

)2
]

=
1
ε2

(
E

[(∫
xkdLn

)2
]
−
(∫

xkdLn

)2
)

=
1
ε2

(
E
[
( 1
n trXk

n)2
]
− E

[
1
n trXk

n

]2)
=

1
ε2n2

n∑
i1,...,ik=1
i′1,...,i

′
k=1

(
E[Xn(i1, i2) . . . Xn(ik, i1)Xn(i′1, i

′
2) . . . Xn(i′k, i

′
1)]

− E[Xn(i1, i2) . . . Xn(ik, i1)]E[Xn(i′1, i
′
2) . . . Xn(i′k, i

′
1)]
)

=
1

ε2nk+2

∑
C∈Pk

∑
(i,i′)∈C∩{1,...,n}k+1×{1,...,n}k+1

(
E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

ξ
(n)
i′1i
′
2
. . . ξ

(n)
i′ki
′
1

]
− E

[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

]
E
[
ξ

(n)
i′1i
′
2
. . . ξ

(n)
i′ki
′
1

])
. (2)

If Ei =
{

(i, i′) | i ≤ i′, (i, i′) = (ij , ij+1) or (i′, i) = (ij , ij+1) for some j
}

is the set of edges
traversed by any closed path i, then

E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

]
=

∏
(i,i′)∈Ei

E
[(
ξ

(n)
ii′

)fi(i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)]
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and

E
[
ξ

(n)
i1i2

. . . ξ
(n)
iki1

ξ
(n)
i′1i
′
2
. . . ξ

(n)
i′ki
′
1

]
=

∏
(i,i′)∈Ei∪Ei′

E
[(
ξ

(n)
ii′

)fi(i,i′)+fi′ (i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)+bi′ (i,i′)]

by the independence condition on {ξ(n)
ij }i≤j . Hence for any pair of paths (i, i′) that together

traverse an edge only once, the corresponding term in the sum in (2) is 0, and any other
pair of paths traverses at most k distinct undirected edges. Also, for any pair of paths (i, i′)
for which Ei and Ei′ are disjoint, the corresponding term in (2) is 0 since

∏
(i,i′)∈Ei∪Ei′

E
[(
ξ

(n)
ii′

)fi(i,i′)+fi′ (i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)+bi′ (i,i′)]

=
∏

(i,i′)∈Ei

E
[(
ξ

(n)
ii′

)fi(i,i′) (
ξ

(n)∗
ii′

)bi(i,i′)] ∏
(i,i′)∈Ei′

E
[(
ξ

(n)
ii′

)fi′ (i,i′) (
ξ

(n)∗
ii′

)bi′ (i,i′)]
.

Any pair of paths for which Ei and Ei′ are not disjoint is such that the undirected edges
of Ei ∪ Ei′ form a connected subgraph. Hence any equivalence class C of closed path pairs
that contributes to the sum in (2) defines a pair of paths with at most k+1 distinct indices,
and so #{(i, i′) ∈ C} ≤ n(n− 1) . . . (n− k). Together with the bounded moment condition
on ξ

(n)
ij , this implies

P
(∣∣∣∣∫ xkdLn −

∫
xkdLn

∣∣∣∣ ≥ ε) ≤ n(n− 1) . . . (n− k)
ε2nk+2

· max
[i,i′]∈Pk

A[i,i′]

for a collection of bounds A[i,i′]. Taking the limit as n→∞ gives the desired result.

Proof of Proposition 2.3. By Proposition 2.9, Ln converges in moment to a measure µ,
symmetric about 0, of bounded support. Suppose that µ is supported on [−C,C], and set
B > max(1, C2) ≥ C. Given any bounded continuous function f , there exists a polynomial
Q such that g = f − Q satisfies sup|x|≤B |g(x)| < ε/8 by the Weierstrass approximation
theorem. Then we have∣∣∣∣∫ f dLn−∫ f dµ∣∣∣∣ ≤ ∣∣∣∣∫ g1|x|≤B dLn−∫ g1|x|≤B dµ∣∣∣∣+

∣∣∣∣∫ g1|x|>B dLn∣∣∣∣+
∣∣∣∣∫ QdLn−∫ Qdµ∣∣∣∣

≤ ε

4
+
∣∣∣∣∫ g1|x|>B dLn

∣∣∣∣+
∣∣∣∣∫ QdLn −

∫
QdLn

∣∣∣∣+
∣∣∣∣∫ QdLn −

∫
Qdµ

∣∣∣∣ ,
so

P
(∣∣∣∣∫ f dLn−∫ f dµ∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∫ g1|x|>B dLn∣∣∣∣ > ε

4

)
+ P

(∣∣∣∣∫ QdLn−∫ QdLn∣∣∣∣ > ε

4

)
+ P

(∣∣∣∣∫ QdLn−∫ Qdµ∣∣∣∣ > ε

4

)
.

As f is bounded, Q is a polynomial, and B > 1, there exists some k such that g(x) ≤ |x|k
on |x| > B. Then

P
(∣∣∣∣∫ g1|x|>B dLn

∣∣∣∣ > ε

4

)
≤ P

(∣∣∣∣∫ |x|k1|x|>B dLn∣∣∣∣ > ε

4

)
≤ 4
ε

∫
|x|k1|x|>B dLn

by Markov’s inequality. Cauchy-Schwartz’s inequality then gives∫
|x|k1|x|>B dLn ≤

√∫
x2kdLn

√∫
1|x|>B dLn,
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and Chebyshev’s inequality gives∫
1|x|>B dLn = Ln

{
|x|k > Bk

}
≤ 1
B2k

∫
x2kdLn.

Hence, by Proposition 2.9,

lim sup
n→∞

P
(∣∣∣∣∫ |x|k1|x|>B dLn∣∣∣∣ > ε

4

)
≤ lim
n→∞

4
∫
x2kdLn
εBk

=
4
∫
x2kdµ

εBk
≤ 4C2k

εBk
.

We note that P
(∣∣∫ |x|k1|x|>B dLn∣∣ > ε

4

)
is increasing in k as B > 1, and limk→∞

4C2k

εBk = 0
because B > C2. Thus

lim
n→∞

P
(∣∣∣∣∫ g1|x|>B dLn

∣∣∣∣ > ε

4

)
= lim
n→∞

P
(∣∣∣∣∫ |x|k1|x|>B dLn∣∣∣∣ > ε

4

)
= 0.

By Lemma 2.11,

lim
n→∞

P
(∣∣∣∣∫ QdLn −

∫
QdLn

∣∣∣∣ > ε

4

)
= 0,

and by Proposition 2.9,

lim
n→∞

P
(∣∣∣∣∫ QdLn −

∫
Qdµ

∣∣∣∣ > ε

4

)
= 0.

Putting this together gives the desired result,

lim
n→∞

P
(∣∣∣∣∫ f dLn −

∫
f dµ

∣∣∣∣ > ε

)
= 0.

We note that as the weak limit µ of Ln must be unique and the only information we used
regarding µ was the values of its moments, µ must be uniquely defined by its moments.

2.3 Computation of the limit distribution of Ln for the GUE and
Wishart Ensemble

Recall from the proof of Proposition 2.9 that the limit distribution µ has moments∫
xkdµ =

∑
C∈Wk

E[fC ]

where, for each C ∈ Wk, fC : [0, 1]k/2+1 → [0,∞) is the function

fC(x1, . . . , xk/2+1) =
k∏
j=1

s
(
xiCj , xiCj+1

)1/2

(3)

for iC = (iC1 , . . . , i
C
k+1) the path in C whose distinct indices are 1, 2, . . . , k2 + 1 in the order

visited (or fC(x1) = 1 if k = 0). If we suppose that s ≡ 1 as in the case of the GUE,
this immediately gives the kth moment of µ as |Wk|, which we computed in the proof of
Proposition 2.9 to be the Catalan number Ck/2. This was the original argument of Wigner
in [28] and specifies the limit measure µ. To achieve greater generality, we will follow the
steps of [2] and first prove the following proposition, which will be of use in the computation
of the limit distribution µ for Wishart matrices:

Proposition 2.12. For each x ∈ [0, 1], define a formal power series

Φ(x, t) =
∞∑
k=0

( ∑
C∈Wk

E[fC(x1, . . . , xk/2+1)|x1 = x]

)
tk+1.
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Then {Φ(x, t)}x∈[0,1] is the unique collection of formal power series with constant term 0
and linear coefficient 1 for all x that satisfies the identity

Φ(x, t) = t

(
1− t

∫ 1

0

s(x, y)Φ(y, t)dy
)−1

, (4)

where the right-hand-side is short-hand for its formal power series expansion in t.

Proof. Let us denote f̃C(x) = E[fC(x1, . . . , xk/2+1)|x1 = x]. For any C ∈ Wk with l(C) =
k > 0, let i = (i1, i2, . . . , ik, i1) be a path in C and let j = max{j ≤ k | ij = i1}. Then
ij′ 6= i1 for any j < j′ ≤ k and, viewing i as the traversal of a tree, we see that ij+1 = ik.
Let C1 ∈ Wj−1 and C2 ∈ Wk−j−1 be the equivalence classes of the paths (i1, i2, . . . , ij) and
(ij+1, ij+2, . . . , ik) respectively. (We note that we might have j = 1 and l(C1) = 0.) Then,
by the definition of f in (3), we have the recursive identity

f̃C(x) =
∫ 1

0

s(x, xj+1)f̃C1(x)f̃C2(xj+1)dxj+1. (5)

As the correspondence between Wk and
⋃k−1
j=1 Wj−1 ×Wk−j−1 sending C to (C1, C2) is a

bijection, we may sum over all equivalence classes of Wigner paths of length k to obtain

∑
C∈Wk

f̃C(x) =
k−1∑
j=1

∑
C1∈Wj−1

∑
C2∈Wk−j−1

∫ 1

0

s(x, y)f̃C1(x)f̃C2(y)dy.

Then

Φ(x, t)
(

1− t
∫ 1

0

s(x, y)Φ(y, t)dy
)

=
∞∑
k=0

( ∑
C∈Wk

f̃C(x)

)
tk+1 ·

(
1− t

∫ 1

0

s(x, y)
∞∑
k=0

( ∑
C∈Wk

f̃C(y)

)
tk+1dy

)

=
∞∑
k=0

 ∑
C∈Wk

f̃C(x)−
k−1∑
j=1

∑
C1∈Wj−1

∑
C2∈Wk−j−1

∫ 1

0

s(x, y)f̃C1(x)f̃C2(y)dy

 tk+1

= t,

since for k = l(C) = 0, fC(x1) = 1 for all x1. Rearranging gives equation (4). To see
that this family of power series is unique, we note that if (1 + a1t+ a2t

2 + a3t
3 + . . .)−1 =

1 + b1t + b2t
2 + . . ., then each bi = −a1bi−1 − a2bi−2 − . . . − ai is defined as a function of

{a1, . . . , ai, b1, . . . , bi−1}. Hence, equation (4) specifies the coefficient of tk in Φ(x, t) as a
function of the coefficients of tj in Φ(y, t) for all y ∈ [0, 1] and j ≤ k − 2. So fixing the
condition that the constant term of Φ(x, t) is 0 and the linear coefficient is 1 for all x ∈ [0, 1]
uniquely specifies Φ(x, t), and the linear coefficient of Φ(x, t) is indeed 1 as it is equal to
f̃C(x) for the zero-length path C.

2.3.1 The GUE and the semicircle law

Proposition 2.12, along with the fact that the kth moment of the limit distribution µ is given
by the coefficient of tk+1 in

∫ 1

0
Φ(x, t)dx, allows us to compute µ for specific matrix classes.

We will see that for the GUE, µ is the following semicircle law supported on [−2, 2]:

Lemma 2.13. Consider the semicircle law σ(x)dx given by the density function

σ(x) =
1

2π

√
4− x21|x|≤2.
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Then the odd moments of σ(x)dx are 0 and the even moments are∫
x2kσ(x)dx = Ck

where Ck is the kth Catalan number.

Proof. For all k, integration by parts gives∫ π/2

−π/2
sin2k θ cos2 θ dθ =

∫ π/2

−π/2
(cos θ)

(
sin2k θ cos θ dθ

)
=

1
2k + 1

∫ π/2

−π/2
sin2k+2 θ dθ.

Substituting x = 2 sin θ gives∫
x2kσ(x)dx =

1
2π

∫ 2

−2

x2k
√

4− x2dx =
22k+1

π

∫ π/2

−π/2
sin2k θ cos2 θ dθ

=
22k+1

(2k + 1)π

∫ π/2

−π/2
sin2k+2 θ dθ.

On the other hand,∫
x2kσ(x)dx =

22k+1

π

∫ π/2

−π/2
sin2k θ cos2 θ dθ

=
22k+1

π

(∫ π/2

−π/2
sin2k θ dθ −

∫ π/2

−π/2
sin2k+2 θ dθ

)

=
22k+1

π

∫ π/2

−π/2
sin2k θ dθ − (2k + 1)

∫
x2kσ(x)dx,

so ∫
x2kσ(x)dx =

22k+1

(2k + 2)π

∫ π/2

−π/2
sin2k θ dθ =

4(2k − 1)
2k + 2

∫
x2k−2σ(x)dx

=
2k(2k − 1)
(k + 1)k

∫
x2k−2σ(x)dx.

This recursion with the initial value
∫
σ(x)dx = 1 gives the result∫

x2kσ(x)dx =
(2k)!

k!(k + 1)!
=

(
2k
k

)
k + 1

= Ck.

Then we have the following theorem:

Theorem 2.14. Suppose
∫ 1

0
s(x, y)dy = 1 for all x ∈ [0, 1]. Then Ln converges weakly, in

probability, to the semicircle law σ(x)dx.

Proof. Given C ∈ Wk, we define f̃C(x), C1, and C2 as in the proof of Proposition 2.12.
Supposing that f̃C1 and f̃C2 are constant over x ∈ [0, 1], equation (5) gives

f̃C(x) =
∫ 1

0

s(x, xj+1)f̃C1(x)f̃C2(xj+1)dxj+1 = f̃C1(x)f̃C2(x)
∫ 1

0

s(x, y)dy = f̃C1(x)f̃C2(x),

which is also constant over x ∈ [0, 1]. As f̃C(x) = 1 for l(C) = 0, induction on l(C) gives
that f̃C is constant over x ∈ [0, 1] for all equivalence classes C of Wigner paths. Then
Φ(x, t) =

∑∞
k=0

∑
C∈Wk

f̃C(x)tk+1 is independent of x, so we may write Φ(x, t) = Θ(t).

11



Equation (4) in Proposition 2.12 thus becomes Θ(t) = t(1 − tΘ(t))−1, which we may solve
to obtain

Θ(t) =
1−
√

1− 4t2

2t
(6)

as the solution whose power series has constant term 0 and linear coefficient 1. We note
that, letting aj be the coefficient of tj in the power series expansion of 1−

√
1−4t2

2t , Θ(t) =
t(1 − tΘ(t))−1 gives aj = 0 for even j, a1 = 1, and the recurrence a2k+1 = a2k−1a1 +
a2k−3a3 + . . . + a1a2k−1. Hence this defines a2k+1 as the kth Catalan number. These are
precisely the moments of the semicircle law, so the result follows from Proposition 2.12.

Setting s ≡ 1 gives the result for the GUE:

Corollary 2.15 (Wigner [28, 29]). Let {Wn}n∈N be the GUE, and let LWn be the empir-
ical eigenvalue distribution of 1√

n
Wn. Then LWn converges weakly, in probability, to the

semicircle law σ(x)dx.

2.3.2 The Wishart Ensemble and the law of Marc̆enko-Pastur

We conclude the discussion of convergence of the empirical eigenvalue distribution by using
Proposition 2.12 to compute the limit distribution µ for the Wishart Ensemble.

Lemma 2.16. Let p ≥ 1, let A = [0, 1
1+p ), and let B = [ 1

1+p , 1]. Suppose s ≡ 0 on A × A
and B ×B, so that for each n, Xn is of the form

Xn =
[

0 Yn
Y ∗n 0

]
where Yn is a b n

1+pc × d
pn

1+pe matrix. Suppose furthermore that∫
A

s(x, y)dy = 1B(x),
∫
B

s(x, y)dy = p1A(x).

Then Ln converges weakly, in probability, to a measure µ defined by∫
f dµ = Kf(0) +

1
(p+ 1)π

∫
∣∣∣ y2−p−1√

p

∣∣∣≤2

f(y)2k
√

4p− (y2 − p− 1)2

|y|
dy (7)

for some constant K.

Proof. Given C ∈ Wk, we define f̃C(x), C1, and C2 as in the proof of Proposition 2.12.
Supposing that f̃C1(x) = 1A(x)f̃AC1

+ 1B(x)f̃BC1
and f̃C2(x) = 1A(x)f̃AC2

+ 1B(x)f̃BC2
for

constants f̃AC1
, f̃BC1

, f̃AC2
, f̃BC2

, equation (5) gives

f̃C(x) =
∫ 1

0

s(x, xj+1)f̃C1(x)f̃C2(xj+1)dxj+1

=
∫ 1

0

s(x, y)
(
1A(x)f̃AC1

+ 1B(x)f̃BC1

)(
1A(y)f̃AC2

+ 1B(y)f̃BC2

)
dy

=
(
1A(x)f̃AC1

+ 1B(x)f̃BC1

)(
f̃AC2

∫
A

s(x, y)dy + f̃BC2

∫
B

s(x, y)dy
)

= 1A(x)f̃AC1
f̃BC2

p+ 1B(x)f̃BC1
f̃AC2

.

As f̃C(x) = 1 for l(C) = 0, induction on l(C) gives that f̃C(x) = 1A(x)f̃AC + 1B(x)f̃BC for
some constants f̃AC , f̃

B
C for all equivalence classes C of Wigner paths. Then we may write

Φ(x, t) = 1A(x)ΦA(t) + 1B(x)ΦB(t), and Equation (4) in Proposition 2.12 becomes

1A(x)ΦA(t) + 1B(x)ΦB(t) = t
(
1− 1B(x)tΦA(t)− p1A(x)tΦB(t)

)−1
.
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Taking x ∈ A and x ∈ B, we may separate this into a pair of equations ΦA(t) = t(1 −
ptΦB(t))−1 and ΦB(t) = t(1− tΦA(t))−1, and solve for ΦA(t) and pΦB(t) to obtain

ΦA(t) =
1 + t2 − pt2 −

√
(1− t2 + pt2)2 − 4pt2

2t
,

pΦB(t) =
1− t2 + pt2 −

√
(1− t2 + pt2)2 − 4pt2

2t
,∫

Φ(x, t)dx = 1
p+1 (ΦA(t) + pΦB(t))

=
1−

√
(1− t2 + pt2)2 − 4pt2

(p+ 1)t
.

We may write

(1− t2 + pt2)2 − 4pt2 = 1− 2(p+ 1)t2 + (p− 1)2t4 =
(
1− (p+ 1)t2

)2 − 4pt4.

Let us set Θ(t) = 1−
√

1−4t2

2t =
∑∞
k=0 Ckt

2k+1 from (6) in the proof of Theorem 2.14, whose
coefficients Ck are the moments of the semicircle law σ(x)dx. Then

Θ
( √

pt2

1− (p+ 1)t2

)
=

1− (p+ 1)t2 −
√

(1− (p+ 1)t2)2 − 4pt4

2
√
pt2

.

Noting that
√
pt2

1−(p+1)t2 =
√
p(t2 + (p+ 1)t4 + (p+ 1)2t6 + . . .) and expanding the composition

of power series,∫
Φ(x, t)dx = t

(
1 +

2
√
p

p+ 1
Θ
( √

pt2

1− (p+ 1)t2

))

= t+
2
√
p

p+ 1

∞∑
k=1

b k−1
2 c∑
j=0

Cjp
j+ 1

2 (p+ 1)k−1−2j

(
k − 1

2j

)
t2k+1,

where we have used the fact that the number of partitions of k into ordered (2j + 1)-tuples
of positive integers is

(
k−1
2j

)
. Then Proposition 2.12 implies that the limit measure µ of the

empirical measures Ln of Xn has even moments∫
x2kdµ =

2p
p+ 1

b k−1
2 c∑
j=0

Cjp
j(p+ 1)k−1−2j

(
k − 1

2j

)

=
p

(p+ 1)π

∫ 2

−2

b k−1
2 c∑
j=0

(
k − 1

2j

)
x2jpj(p+ 1)k−1−2j

√
4− x2 dx

=
p

(p+ 1)π

∫ 2

−2

k−1∑
j=0

(
k − 1
j

)
xj
√
p
j(p+ 1)k−1−j

√
4− x2 dx

=
p

(p+ 1)π

∫ 2

−2

(
√
px+ p+ 1)k−1

√
4− x2 dx

for k ≥ 1. Making the substitutions y = (
√
px + p + 1)1/2 and y = −(

√
px + p + 1)1/2, we

have ∫
x2kdµ =

p

2(p+ 1)π

∫
∣∣∣ y2−p−1√

p

∣∣∣≤2

y2k−2

√
4−

(
y2 − p− 1
√
p

)2

· 2|y|
√
p
dy

=
1

(p+ 1)π

∫
∣∣∣ y2−p−1√

p

∣∣∣≤2

y2k
√

4p− (y2 − p− 1)2

|y|
dy.
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If we set K so that

1
(p+ 1)π

∫
∣∣∣ y2−p−1√

p

∣∣∣≤2

√
4p− (y2 − p− 1)2

|y|
dy = 1−K,

then we note that the measure defined as in (7) has the same moments as the limit measure
µ of Ln, so the result follows from Proposition 2.3.

This lemma allows us to compute the limit empirical eigenvalue distribution for the Wishart
Ensemble:

Theorem 2.17 (Marc̆enko, Pastur [17]). Let {Mn}n∈N be the Wishart Ensemble with
parameter p, and let LMn be the empirical measure of 1

nMn. Set a = (
√
p − 1)2 and

b = (
√
p + 1)2. Then LMn converges weakly, in probability, to the Marc̆enko-Pastur law

µMP(x)dx with density

µMP(x) =

√
(x− a)(b− x)

2πx
1[a,b].

Proof. Suppose Mn = YnY
∗
n as in Definition 1.5, and let

Xn+bpnc =

[
0 1√

n
Yn

1√
n
Y ∗n 0

]
.

Let A = [0, 1
p+1 ) and B = [ 1

p+1 , 1]. Then we note that the conditions in Definition 2.1 are
satisfied for Xn+bpnc with s(x, y) = 0 if (x, y) ∈ (A × A) ∪ (B × B) and s(x, y) = p + 1
if (x, y) ∈ (A × B) ∪ (B × A). Thus, by Lemma 2.16, the empirical eigenvalue measures
Ln+bpnc of Xn+bpnc converge weakly, in probability, to the distribution µ given by (7).

We note that if Yn has rank r, thenMn has rank r andXn+bpnc has rank 2r. IfXn+bpnc

[
v1

v2

]
=[

λv1

λv2

]
, then Xn+bpnc

[
v1

−v2

]
=
[
−λv1

λv2

]
and 1

nMnv1 = 1√
n
Yn · 1√

n
Y ∗n v1 = λ2v1. Hence the 2r

nonzero eigenvalues of Xn+bpnc come in oppositely signed pairs, and the r nonzero eigenval-
ues of 1

nMn are the squares of those of Xn+bpnc. This implies that for any g ∈ Cb(R) with
g(0) = 0,

(n+ bpnc) ·
∫
g(x2)Ln+bpnc(dx) = 2n

∫
g(x)LMn (dx).

Then ∫
g(x)LMn (dx) P→ p+ 1

2

∫
g(x2)µ(dx)

=
1

2π

∫
∣∣∣ x2−p−1√

p

∣∣∣≤2

g(x2)
√

4p− (x2 − p− 1)2

|x|
dx

=
1
π

∫ 2
√
p+p+1

−2
√
p+p+1

g(y)
√

4p− (y − p− 1)2

2y
dy.

Setting a = (
√
p− 1)2 and b = (

√
p+ 1)2, we can write this as∫

g(x)LMn (dx) P→
∫ b

a

g(x)
√

(x− a)(b− x)
2πx

dx.

We may check that the integral on the right evaluates to 1 for g ≡ 1, so in fact this holds
for all g ∈ Cb(R). Thus LMn converges weakly, in probability, to µMP(x)dx.

Let us remark before continuing that these results can be strengthened in various ways. It
was shown in [17] using a Stieltjes-transform method that the convergence in Theorems 2.14
and 2.17 in fact hold almost surely. The condition of all moments finite in Definition 2.1
can be weakened; see [4].
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3 Joint Distribution of Eigenvalues

The convergence of the empirical eigenvalue distribution provides us with a global histogram
picture of the eigenvalues for the GUE and the Wishart Ensemble, and the combinatorial
approach used in the previous section holds more generally for matrices whose entries are
not normally distributed. If we make use of the normal distributions in Definitions 1.4 and
1.5, then we can obtain information that is much more precise regarding the eigenvalue dis-
tributions. Recall from the spectral theorem that any Hermitian matrix H can be factored
as H = UDU∗, where U is a unitary matrix whose columns are eigenvectors of H, and D
is a diagonal matrix containing the eigenvalues of H. If we parameterize U and D with
real variables, we may view this as a change of variables formula from these variables to the
entries of H. The distribution of matrix entries for H thus induces a distribution over our
parameter space for U and D, and in particular this allows us to derive the joint distribution
of eigenvalues of the matrix. We will detail these steps in this section and derive the joint
distribution of eigenvalues for matrices invariant under unitary conjugation, including ma-
trices in the GUE and the Wishart Ensemble. Our presentation draws from [1], [5], and [18].

Throughout this section, we will work with the following parametrization of the space of
Hermitian matrices:

Definition 3.1. Let Hn be the space of n× n Hermitian matrices, parameterized by the n2

real variables αii = (Hn)ii for 1 ≤ i ≤ n and αij =
√

2 Re(Hn)ij and βij =
√

2 Im(Hn)ij
for i < j. Let ϕ : Rn2 → Hn be this parametrization map, and endow Hn with the measure
dHn =

∏n
i=1 dαii

∏
i<j dαijdβij induced by Lebesgue measure on the parameter space.

Let us observe that

trH2
n =

n∑
i,j=1

HijHji =
n∑
i=1

H2
ii + 2

∑
1≤i<j≤n

(Re(Hij)2 + Im(Hij)2) = ‖ϕ−1(Hn)‖22

under this parametrization. We note that dHn satisfies invariance under unitary conjugation
in the following sense:

Proposition 3.2. Let Un be a unitary matrix and consider the map Hn → Gn = UnHnU
∗
n.

Then dGn = dHn, i.e., the Jacobian of the transformation ϕ−1(Hn)→ ϕ−1(Gn) has deter-
minant ±1.

Proof. Let us denote u : Rn2 → Rn2
as the transformation u(x) = ϕ−1(Unϕ(x)U∗n) that

sends ϕ−1(Hn) to ϕ−1(Gn). As u is linear and ‖ϕ−1(Hn)‖22 = trH2
n = trG2

n = ‖ϕ−1(Gn)‖22,
this shows that ‖x‖2 = ‖ux‖2 for all x ∈ Rn2

. Hence u is orthogonal and |detu| = 1.

As a result, any distribution of random Hermitian matrices of the form f(H)dH where f
is dependent on only the eigenvalues of H is also invariant under unitary conjugation, and
we will see that the GUE and Wishart Ensemble are examples of such distributions. For
such matrices, we may use a change of variables idea to compute the joint distribution of
eigenvalues. To make this idea rigorous, we will need the following technical lemma, taken
from [1], regarding the parametrization of unitary matrices:

Lemma 3.3. Let Un be the group of n× n unitary matrices and Dn be the group of n× n
real diagonal matrices. Let Λ = {λ ∈ Rn | λ1 > . . . > λn}, and let d : Λ→ Dn map λ to the
matrix with λ along the diagonal. Then there exists a set O ⊂ Rn(n−1) of full measure and
a smooth, injective parametrization p : O → Un such that the map γ : Λ×O → Hn given by
γ(λ, x) = p(x)d(λ)p(x)∗ is smooth and injective with image of full measure in Hn.
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Proof. Let Vn ⊂ Un be the set of unitary matrices with nonzero leading principal minors
and nonzero diagonal entries, and consider the map q : Vn → Rn(n−1) defined as

q


u11 · · · u1n

...
. . .

...
un1 · · · unn


 =

(
Re

u12

u11
, Im

u12

u11
, . . . ,Re

u1n

u11
, Im

u1n

u11
,Re

u23

u22
, Im

u23

u22
,

. . . ,Re
u2n

u22
, Im

u2n

u22
, . . . ,Re

un−1,n

un−1,n−1
, Im

un−1,n

un−1,n−1

)
.

Let O be the image of q. For any x ∈ O, set vii = 1 for i = 1 to n and vij = Re uij

uii
+ i Im uij

uii

for i < j, and define recursively

(vi1, . . . , vi,i−1) =

 v11 · · · v1,i−1

...
. . .

...
vi−1,1 · · · vi−1,i−1


−1  v1i · · · v1n

...
. . .

...
vi−1,i · · · vi−1,n


−vii...
−vin


for i = 2, . . . , n; this is the unique way to complete the matrix V = (vij)1≤i,j≤n to have
orthogonal rows. Hence the ith row of V is a scalar multiple of the ith row of U , and so
the inverse matrices used in the construction exist because U has nonzero leading principal
minors. In fact, Rn(n−1) \O is precisely the set such that one of the leading principal minors
of V or a diagonal entry of V is 0. As the entries of V are rational functions of the entries
of q(U), Rn(n−1) \ O is Zariski closed in Rn(n−1) and hence has zero measure. For x ∈ O,
let p(x)ij = vij/‖(vi1, . . . , vin)‖2, so that p(x) ∈ Un. By the uniqueness of the construction
of V , p is injective (and smooth). Indeed, we note that p(q(U)) is the matrix whose rows
are multiples of those of U with positive real diagonal entries.

We see that γ is smooth since p is smooth, and it is injective since the parameter vector
(x, λ) uniquely determines the eigenvalues and eigenvectors (up to scalar multiples) of X if
the elements of λ are distinct. Consider the set G of matrices X ∈ Hn that can be factored
as X = UDU∗, where U is unitary with all minors nonzero and D is diagonal such that∏
i∈I Dii 6=

∏
i∈J Dii for any two nonempty subsets I, J ⊂ {1, . . . , n} of the same cardinal-

ity. In particular, U has nonzero entries and nonzero leading principal minors and D has
distinct diagonal entries, and we may choose D such that the diagonal entries are strictly
decreasing and U such that the diagonal entries are all positive real. Hence G is contained
in the image of γ.

To see that G and hence the image of γ has full measure in Hn, consider for each X ∈ Hn
and each r = 1, . . . , n the

(
n
r

)
×
(
n
r

)
matrix X(r) indexed by pairs of r-element subsets of

{1, . . . , n} such that X(r)
IJ = detXIJ , the minor corresponding to the submatrix of rows

indexed by I and columns indexed by J . We note that X(r)∗ = (X∗)(r), so X(r) is Hermi-
tian, and (XY )(r) = X(r)Y (r) as det(XY )IJ =

∑
K⊂{1,...,n},|K|=r detXIK detYKJ by the

Cauchy-Binet formula. Hence, if X = UDU∗, then we may factor X(r) as U (r)D(r)U (r)∗

where U (r) is unitary and D(r) is diagonal. The set Hn \ G is characterized by the matrices
such that two diagonal entries of D(r) are equal for some r or an element of U (r) is zero for
some r.

The condition that D(r) has a repeated diagonal entry is the condition that the discriminant
of the characteristic polynomial ofX(r) is zero, which is a polynomial condition on the entries
of X(r) and hence of X. Supposing that X(r) has distinct eigenvalues, let λ be one such
eigenvalue with eigenvector v, let A = X(r)−λI, and let A(i,j) be A with row i and column
j removed. Then AAadj = (detA)I = 0 where Aadj

ij = (−1)i+j detA(i,j), and A has kernel
spanned by v so each column of Aadj is a nonzero multiple of v. Then vi = 0 if and only
if Aadj

ii = 0, which holds if and only if λ is also an eigenvalue of A(i,i). Hence an entry of
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U (r) is zero if and only if A and A(i,i) have a common eigenvalue for some i, which is the
condition that the resultant of the characteristic polynomials of A and A(i,i) is 0. This is
a polynomial condition on the entries of A and hence of X(r) and X. So the set Hn \ G
corresponds to a Zariski closed subset of the parameter space {αij}i≤j ∪{βij}i<j of Hn and
hence has zero measure in Hn.

Proposition 3.4. There exists a constant C such that for any function f : Hn → R that
can be written as f(Hn) = g(λ1, . . . , λn), depending only on the eigenvalues λ1 ≥ . . . ≥ λn
of Hn, we have∫

f(Hn)dHn = C

∫
λ1≥...≥λn

g(λ1, . . . , λn)
∏
i<j

(λi − λj)2dλ1 . . . dλn.

Proof. Extending g : Rn → R to f̃ : Rn2 → R given by f̃(λ1, . . . , λn, x1, . . . , xn(n−1)) =
g(λ1, . . . , λn), we have by the preceding lemma that∫

{λ1>...>λn}×O
f̃ |D(ϕ−1 ◦ γ)|dλ1 . . . dλndx1 . . . dxn(n−1) =

∫
f(Hn)dHn

for a full-measure subset O ⊂ Rn(n−1) and smooth, injective parametrization γ(λ, x) =
p(x)d(λ)p(x)∗, where p(x) is unitary. Consider the linear map rx : Rn2 → Rn2

such that
rx(v) = ϕ−1(p(x)∗ϕ(v)p(x)). As ‖v‖22 = trϕ(v)2 and tr(p(x)∗ϕ(v)p(x))2 = tr p(x)∗ϕ(v)2p(x) =
trϕ(v)2, rx is orthogonal and |det rx| = 1. Then |D(ϕ−1 ◦γ(λ, x))| = |rx ·D(ϕ−1 ◦γ(λ, x))|.

We have, for each k, the matrix equation

∂γ(λ, x)
∂λk

= p(x)
∂d(λ)
∂λk

p(x)∗,

and hence the column rx ·ϕ−1
(
∂γ(λ,x)
∂λk

)
of rx ·D(ϕ−1◦γ) is given by αkk = 1 and αij , βij = 0

for all other i, j. We also have, for each k, the matrix equation

∂γ(λ, x)
∂xk

=
∂p(x)
∂xk

d(λ)p(x)∗ + p(x)d(λ)
(
∂p(x)
∂xk

)∗
= p(x)(sk(x)d(λ) + d(λ)sk(x)∗)p(x)∗

for sk(x) = p(x)∗ ∂p(x)
∂xk

. We note that p(x)∗p(x) = I for all x, so sk(x) = −sk(x)∗. Then

sk(x)d(λ) + d(λ)sk(x)∗ = sk(x)d(λ)− d(λ)sk(x), and the column rx ·ϕ−1
(
∂γ(λ,x)
∂xk

)
is given

by xii = 0 for all i, and xij = (λj − λi) Re(sk(x)ij) and yij = (λj − λi) Im(sk(x)ij) for all
i < j. Putting this together, we have that

|D(ϕ−1 ◦ γ(λ, x))| = |rx ·D(ϕ−1 ◦ γ(λ, x))| = c(x) ·
∏
i<j

(λj − λi)2

for some function c depending only on x. Then∫
f(Hn)dHn =

∫
λ1>...>λn

g(λ1, . . . , λn)
∏
i<j

(λi − λj)2dλ1 . . . dλn

∫
O

c(x)dx1 . . . dxn(n−1)

= C

∫
λ1≥...≥λn

g(λ1, . . . , λn)
∏
i<j

(λi − λj)2dλ1 . . . dλn

for a constant C =
∫
O
c(x)dx1 . . . dxn(n−1).

This proposition gives us the joint density function of eigenvalues for any matrix ensemble
exhibiting this type of unitary invariance.
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3.1 Joint eigenvalue density for the GUE

By Definitions 1.4 and 3.1, we see that Wn from the GUE has the distribution

1

(2π)
n2
2

exp

−1
2

 ∑
1≤i≤j≤n

α2
ij +

∑
1≤i<j≤n

β2
ij

 ∏
1≤i≤j 6=n

dαij
∏

1≤i<j≤n

dβij =
1

(2π)
n2
2

e−
1
2 trH2

ndHn.

This gives the following result for the GUE as an immediate corollary of Proposition 3.4:

Theorem 3.5 (Ginibre [12]). Let Wn be the n × n matrix of the GUE, with eigenvalues
λ1 ≥ . . . ≥ λn. Then the joint distribution of these eigenvalues is given by the density
function

ρ̂(λ1, . . . , λn) = C · 1λ1≥...≥λn

∏
1≤i<j≤n

(λi − λj)2
n∏
i=1

e−
1
2λ

2
i ,

where

C =

∫
λ1≥...≥λn

∏
1≤i<j≤n

(λi − λj)2
n∏
i=1

e−
1
2λ

2
i dλi

−1

.

3.2 Joint eigenvalue density for the Wishart Ensemble

In the case of the Wishart Ensemble, we must first derive the form of the distribution for
the matrix entries. This result was first obtained by Wishart for real matrices in [30] and
extended to the complex Wishart distribution by Goodman in [14]; our proof follows the
ideas from that of the real Wishart distribution in [3].

Proposition 3.6. Let Pn be the space of positive-definite Hermitian matrices. Then Mn,
the n× n matrix of the Wishart Ensemble with parameter p, has the distribution

C · 1Hn∈Pn
(detHn)bpnc−ne− trHndHn

for a constant C.

Proof. Let m = bpnc. Suppose Mn = YnY
∗
n as in Definition 1.5, and let Yn have rows

v1, . . . , vn with vi ∈ Cm for each i. Taking the standard inner product 〈v, w〉 = v∗w, let
w1, . . . , wn be the orthonormal vectors obtained through Gram-Schmidt orthogonalization
on v1, . . . , vn, i.e., w1 = v1/‖v1‖ and

wi =
vi −

∑i−1
j=1〈vi, wj〉wj

‖vi −
∑i−1
j=1〈vi, wj〉wj‖

for i = 2, . . . , n. This gives us the factorization Yn = TnUn, where Tn is an n × n
lower-triangular matrix and Un has orthonormal rows w1, . . . , wn. Hence Mn = YnY

∗
n =

TnUnU
∗
nT
∗
n = TnT

∗
n . The entries of Tn are given by tij = 〈vi, wj〉 for i > j and tii =

‖vi −
∑i−1
j=1〈vi, wj〉wj‖ ≥ 0.

We note that each vi is of the form 1√
2
(xi1 + iyi1, . . . , xim + iyim), where each xij and yij

has a standard normal distribution. Then the joint density function for {xij}mj=1 ∪ {yij}mj=1

is given by

1
(2π)m

exp

−1
2

m∑
j=1

x2
ij + y2

ij

 .

This is radially symmetric in the Cm-vector 1√
2
(xi1+iyi1, . . . , xim+iyim), and hence the dis-

tribution of vi is invariant under any unitary change of basis. This implies that, if v1, . . . , vi−1
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are given, then ti1, . . . , ti,i−1 are conditionally independent with the same distribution as the
entries of Yn, and tii is conditionally independent from ti1, . . . , ti,i−1 with the same distri-
bution as ‖(xii + iyii, . . . , xim + iyim)‖. The former distribution is given by 1√

2
(x+ iy) with

x and y independent standard normal. As ‖(xii+ iyii, . . . , xim+ iyim)‖2 = 1
2

∑m
j=i x

2
ij + y2

ij ,
2t2ii has the χ2-distribution with 2(m − i + 1) degrees of freedom, so the latter distribu-
tions are given by the densities Cit2m−2i+1

ii e−t
2
ii for constants Ci. As these distributions

do not depend on v1, . . . , vi−1, we in fact obtain that {tij}i≥j are unconditionally inde-
pendent with these distributions. Hence, if we parameterize Tn by {uii}ni=1 = {tii}ni=1,
{uij}i>j =

√
2 Re{tij}i>j , and {vij}i>j =

√
2 Im{tij}i>j , then the joint density of these

parameters is given by

C

n∏
i=1

u2m−2i+1
ii e−u

2
ii

∏
i>j

e−
1
2 (u2

ij+v2ij) = C

n∏
i=1

u2m−2i+1
ii e− trTnT

∗
n

for a constant C > 0.

Let us parameterize Hn by αij and βij as in Definition 3.1. Then the map Tn →Mn = TnT
∗
n

is given by

αii =
1
2

∑
k<i

(u2
ik + v2

ik) + u2
ii

for i = 1 to n and

1√
2

(αij + iβij) =
1
2

∑
k<i

(uik + ivik)(ujk − ivjk) +
1√
2
uii(uji − ivji),

or equivalently,

αij =
1√
2

∑
k<i

(uikujk + vikvjk) + uiiuji,

βij =
1√
2

∑
k<i

(ujkvik − uikvjk)− uiivji

for i < j. If we order the parameters for Tn in the order u11, u21, v21, u31, v31, . . . , un1, vn1,
u22, u32, v32, . . . , unn and the parameters for Mn in the order α11, α12, β12, α13, β13, . . .,
α1n, β1n, α22, α23, β23, . . . , αnn, then the Jacobian of this map is the determinant of an upper-
triangular matrix with diagonal entries ∂αii

∂uii
= 2uii,

∂αij

∂uji
= uii, and ∂βij

∂vji
= −uii. Hence

the Jacobian has absolute value 2n
∏n
i=1 u

2n−2i+1
ii . As

∏n
i=1 uii = detTn = (detMn)1/2, the

distribution of Mn is given by C(detHn)m−ne− trHndHn for a constant C, over the range
of the map Tn →Mn, i.e. the positive definite matrices Hn.

This gives the following result as an immediate corollary of Proposition 3.4; the analogous
result for real matrices was first obtained independently in [11], [13], [15], and [22]:

Theorem 3.7. Let Mn be the n×n matrix of the Wishart Ensemble with parameter p, with
eigenvalues λ1 ≥ . . . ≥ λn ≥ 0. Then the joint distribution of these eigenvalues is given by
the density function

ρ̂(λ1, . . . , λn) = C · 1λ1≥...≥λn≥0

∏
1≤i<j≤n

(λi − λj)2
n∏
i=1

λ
bpnc−n
i e−λi ,

where

C =

∫
λ1≥...≥λn≥0

∏
1≤i<j≤n

(λi − λj)2
n∏
i=1

λ
bpnc−n
i e−λidλi

−1

.
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4 Convergence of the Local Eigenvalue Correlation Func-
tion

The formulas for the joint density of eigenvalues from the previous section allow us to study
the local statistics of eigenvalues in the GUE and Wishart Ensemble. We note that the
density functions are not symmetric because they assume that the inputs are ordered, and
we may symmetrize as follows:

Definition 4.1. Suppose that an n×n random matrix has joint density of (ordered) eigen-
values given by ρ̂(x1, . . . , xn) = 1x1≥...≥xn

f(x1, . . . , xn) for a symmetric function f . Its
joint density of unordered eigenvalues is ρ(x1, . . . , xn) = 1

n!f(x1, . . . , xn).

This joint density of unordered eigenvalues satisfies the properties that, for any function f
and permutation σ of {1, . . . , n}, we have∫

Rn

f(x1, . . . , xn)ρ(x1, . . . , xn)dx1 . . . dxn =
∫

Rn

f(σ(x1), . . . , σ(xn))ρ(x1, . . . , xn)dx1 . . . dxn,

(8)
and for any symmetric function f ,∫

Rn

f(x1, . . . , xn)ρ(x1, . . . , xn)dx1 . . . dxn =
∫
x1≥...≥xn

f(x1, . . . , xn)ρ̂(x1, . . . , xn)dx1 . . . dxn.

(9)
The focus of our study of local eigenvalue statistics of the GUE and Wishart Ensemble will
be the following k-point eigenvalue correlation functions, introduced by Dyson in [6] and
[7]:

Definition 4.2. The k-point eigenvalue correlation function of an n×n random matrix X,
for 1 ≤ k ≤ n, is

Rk(x1, . . . , xk) =
n!

(n− k)!

∫
Rn−k

ρ(x1, . . . , xn) dxk+1 . . . dxn.

We note that these are simply scaled marginal densities of k unordered eigenvalues, and
we may interpret Rk(x1, . . . , xk) as an “expectation density” of finding eigenvalues close to
x1, . . . , xk in the following sense:

Proposition 4.3. Given sets A1, . . . , Ak ⊂ R,
∫
A1

. . .

∫
Ak

Rk(x1, . . . , xk) dx1 . . . dxk is the

expected number of ordered k-tuples of distinct eigenvalues (λi1 , . . . , λik) of X such that
λij ∈ Aj for each j from 1 to k.

Proof. The proof is straightforward from equations (8) and (9). Indeed,∫
A1

. . .

∫
Ak

Rk(x1, . . . , xk) dx1 . . . dxk

=
∫

Rk

1A1(x1) . . .1Ak
(xk)Rk(x1, . . . , xk) dx1 . . . dxk

=
n!

(n− k)!

∫
Rn

1A1(x1) . . .1Ak
(xk)ρ(x1, . . . , xn) dx1 . . . dxn

=
∫

Rn

∑
σ∈Σk,n

1A1(xσ(1)) . . .1Ak
(xσ(k))ρ(x1, . . . , xn) dx1 . . . dxn

=
∫
x1≥...≥xn

∑
σ∈Σk,n

1A1(xσ(1)) . . .1Ak
(xσ(k))ρ̂(x1, . . . , xn) dx1 . . . dxn,

where Σk,n is the set of all ordered k-tuples of distinct indices from 1 to n, and the last
quantity is our desired expectation.
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The formula for ρ(x1, . . . , xn) can, in the case of matrices exhibiting unitary invariance,
be expressed in terms of polynomials orthogonal with respect to certain weight functions.
This allows us to write the k-point eigenvalue correlation functions Rk in a relatively simple
determinantal form, which we will derive in Section 4.1. This will then translate the problem
of determining a limit law for Rk into one of determining the asymptotic growth for these
orthogonal polynomials, and we will use the asymptotic properties of the specific polynomials
associated to the GUE and Wishart Ensemble to derive limit laws for the bulk of the
spectrum in Section 4.2. Our presentation draws on [1], [5], [18], [20], and [24].

4.1 Properties of the k-point eigenvalue correlation functions

In this section, let us consider an n × n random matrix X with joint density of unordered
eigenvalues

ρ(x1, . . . , xn) = C
∏

1≤i<j≤n

|xi − xj |2
n∏
i=1

w(xi), (10)

for a weight function w : R→ R≥0 such that
∫
|xk|w(x)dx <∞ for all k. For polynomials p,

let us denote
∫
p(x)2w(x)dx as the norm-squared of p with respect to w, and for two polyno-

mials p and q, let us say that they are orthogonal with respect to w if
∫
p(x)q(x)w(x) dx = 0.

We will use the following notation:

Definition 4.4. Given a function K : R2 → R, denote

k

det
i,j=1

K(xi, xj) =

∣∣∣∣∣∣∣
K(x1, x1) · · · K(x1, xk)

...
. . .

...
K(xk, x1) · · · K(xk, xk)

∣∣∣∣∣∣∣
for k ≥ 1. Denote

det(I −K)[a,b] = 1 +
∞∑
k=1

(−1)k

k!

∫
[a,b]k

k

det
i,j=1

K(xi, xj) dx1 . . . dxk.

The central result of this section is that we may express the k-point eigenvalue correlation
function as a determinant of a matrix of values related to orthogonal polynomials:

Proposition 4.5 (Mehta, Gaudin [19]). Suppose the joint density of unordered eigenvalues
of X is given by equation (10), and let Rk be its k-point eigenvalue correlation function.
Let {pk}∞k=0 be monic polynomials orthogonal with respect to w, with pk of degree k and
norm-squared ck with respect to w. Then for each k from 1 to n,

Rk(x1, . . . , xk) =
k

det
i,j=1

K(xi, xj) (11)

where

K(x, y) =
n−1∑
j=0

√
w(x)w(y)pj(x)pj(y)

cj
.

Proof. We show by induction that Rk(x1, . . . , xk) = n!C · c0 . . . cn−1

k

det
i,j=1

K(xi, xj) (where

C is the constant in the joint eigenvalue density of X). For the base case k = n,

Rn(x1, . . . , xn) = n!ρ(x1, . . . , xn) = n!C
∏

1≤i<j≤n

|xi − xj |2
n∏
i=1

w(xi).
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We note that
∏

1≤i<j≤n

|xi − xj | =
∣∣∣∣ n

det
i,j=1

xj−1
i

∣∣∣∣ is the van der Monde determinant, and

n

det
i,j=1

xj−1
i =

n

det
i,j=1

pj−1(xi) because our polynomials pj are monic and adding a multiple

of one row of a matrix to another does not change the determinant. Hence

Rn(x1, . . . , xn) = n!C · c0 . . . cn−1

(
n

det
i,j=1

√
w(xi)pj−1(xi)√

cj−1

)2

.

We then note that(
n

det
i,j=1

f(xi, xj)
)2

=
(

n

det
i,j=1

f(xi, xj)
)(

n

det
i,j=1

f(xj , xi)
)

=

(
n

det
i,j=1

n∑
k=1

f(xi, xk)f(xj , xk)

)
,

where the first equality uses detA = detAT and the second uses (detA)(detB) = detAB.
Thus

Rn(x1, . . . , xn) = n!C · c0 . . . cn−1

n

det
i,j=1

K(xi, xj)

as desired. For the inductive step, suppose

Rk−1(x1, . . . , xk−1) =
1

n− k + 1

∫
Rk(x1, . . . , xk)dxk

=
n!C · c0 . . . cn−1

n− k + 1

∫
k

det
i,j=1

K(xi, xj) dxk.

We may expand the determinant as

k

det
i,j=1

K(xi, xj) =
∑

σ∈Σk,k

sgn(σ)K(x1, xσ(1)) . . .K(xk, xσ(k)),

where Σk,k is the set of permutations on {1, . . . , k}. For each j from 1 to k, there is a bijection
fj : {σ ∈ Σk,k | σ(j) = k} → Σk−1,k−1 such that fj(σ)(j) = σ(k) and fj(σ)(i) = σ(i) for all
i 6= j. We note that sgn fj(σ) = − sgnσ if j 6= k and sgn fk(σ) = sgnσ. As

∫
K(x, y)K(y, z)dy =

∫ √
w(x)w(z)w(y)

n−1∑
j=0

pj(x)pj(y)
cj

n−1∑
j=0

pj(y)pj(z)
cj

 dy

=
√
w(x)w(z)

n−1∑
i,j=0

pi(x)pj(z)
cicj

∫
pi(y)pj(y)w(y)dy

= K(x, z),

where the last equality uses that
∫
pi(y)pj(y)w(y)dy = 0 if i 6= j and

∫
pi(y)pj(y)w(y)dy = ci

if i = j. Thus we have for j 6= k,∫ ∑
σ(j)=k

sgn(σ)K(x1, xσ(1)) . . .K(xj , xk) . . .K(xk, xσ(k))dxk

=
∑

σ(j)=k

sgn(σ)K(x1, xσ(1)) . . .K(xj , xσ(k)) . . .K(xk−1, xσ(k−1))

= −
∑

σ∈Σk−1,k−1

sgn(σ)K(x1, xσ(1)) . . .K(xk−1, xσ(k−1))

= −
k−1

det
i,j=1

K(xi, xj).
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On the other hand, as ∫
K(x, x)dx =

∫ n−1∑
j=0

w(x)pj(x)2

cj
dx = n,

we have for j = k,∫ ∑
σ(k)=k

sgn(σ)K(x1, xσ(1)) . . .K(xk−1, xσ(k−1)) . . .K(xk, xk)dxk

=n
∑

σ∈Σk−1,k−1

sgn(σ)K(x1, xσ(1)) . . .K(xk−1, xσ(k−1))

=n
k−1

det
i,j=1

K(xi, xj).

Summing over j from 1 to k gives

Rk−1(x1, . . . , xk−1) = n!C · c0 . . . cn−1

k−1

det
i,j=1

K(xi, xj)

as desired, completing the induction. In particular,

1 =
∫

Rn

ρ(x1, . . . , xn) dx1 . . . dxn =
1
n

∫
R1(x1) dx1

=
n!C · c0 . . . cn−1

n

∫
K(x1, x1) dx1 = n!C · c0 . . . cn−1,

giving the desired result.

Proposition 4.5 will allow us to obtain a limit theorem for the k-point eigenvalue correlation
functions of the GUE and Wishart Ensemble as n → ∞. Before doing so, though, let us
comment that the k-point eigenvalue correlation functions of X allow us to compute various
other local statistics of the eigenvalue distribution of X. As an example, we may obtain a
formula for the probability of finding exactly m eigenvalues in a closed interval:

Proposition 4.6. Suppose the joint density of unordered eigenvalues of X is given by
equation (10). Suppose {pk}∞k=0 are monic polynomials orthogonal with respect to w, with
pk of degree k and norm-squared ck with respect to w. For m ≥ 0, let Sm([a, b]) be the
probability that X has exactly m eigenvalues in [a, b]. Then

Sm([a, b]) =
1
m!

(
− d

dγ

)m
det(I − γK)[a,b]

∣∣∣∣
γ=1

where

K(x, y) =
n−1∑
j=0

√
w(x)w(y)pj(x)pj(y)

cj
.

Proof. Let us denote Σ′m,n as the collection of (unordered) subsets of {1, . . . , n} of size m.
We may use (8) and (9) to obtain

Sm([a, b]) =
∫
x1≥...≥xn

∑
σ∈Σ′m,n

∏
i∈σ

1[a,b](xi)
∏
i/∈σ

(
1− 1[a,b](xi)

)
ρ̂(x1, . . . , xn)dx1 . . . dxn

=
∫

Rn

∑
σ∈Σ′m,n

∏
i∈σ

1[a,b](xi)
∏
i/∈σ

(
1− 1[a,b](xi)

)
ρ(x1, . . . , xn)dx1 . . . dxn

=
(
n

m

)∫
Rn

m∏
k=1

1[a,b](xk)
n∏

k=m+1

(
1− 1[a,b](xk)

)
ρ(x1, . . . , xn)dx1 . . . dxn.
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We note that

− d

dγ

∫
Rn

m∏
k=1

1[a,b](xk)
n∏

k=m+1

(
1− γ1[a,b](xk)

)
ρ(x1, . . . , xn)dx1 . . . dxn

=
∫

Rn

n∑
k=m+1

1[a,b](xk)
m∏
j=1

1[a,b](xj)
n∏

j=m+1
j 6=k

(
1− γ1[a,b](xj)

)
ρ(x1, . . . , xn)dx1 . . . dxn

= (n−m)
∫

Rn

m+1∏
k=1

1[a,b](xk)
n∏

k=m+2

(
1− γ1[a,b](xk)

)
ρ(x1, . . . , xn)dx1 . . . dxn.

Hence

Sm([a, b]) =
1
m!

(
− d

dγ

)m [∫
Rn

n∏
k=1

(
1− γ1[a,b](xk)

)
ρ(x1, . . . , xn)dx1 . . . dxn

]
γ=1

.

We then have that∫
Rn

n∏
k=1

(
1− γ1[a,b](xk)

)
ρ(x1, . . . , xn)dx1 . . . dxn

=
∫

Rn

1 +
n∑
k=1

(−γ)k
∑

σ∈Σ′k,n

∏
i∈σ

1[a,b](xi)

 ρ(x1, . . . , xn)dx1 . . . dxn

= 1 +
n∑
k=1

(−γ)k ·
(
n

k

)∫
Rn

k∏
i=1

1[a,b](xi)ρ(x1, . . . , xn)dx1 . . . dxn

= 1 +
n∑
k=1

(−γ)k

k!

∫
[a,b]k

R(x1, . . . , xk)dx1 . . . dxk

= 1 +
n∑
k=1

(−γ)k

k!

∫
[a,b]k

k

det
i,j=1

K(xi, xj)dx1 . . . dxk

by Proposition 4.5. We note that

(K(xi, xj))ki,j=1 =
n−1∑
j=0

1
cj


√
w(x1)pj(x1)

...√
w(xk)pj(xk)

(√w(x1)pj(x1) . . .
√
w(xk)pj(xk)

)
,

which has rank at most n. Hence detki,j=1K(xi, xj) = 0 for all k > n, so

Sm([a, b]) =
1
m!

(
− d

dγ

)m
det(I − γK)[a,b]

∣∣∣∣
γ=1

.

4.2 Limiting behavior of the correlation function in the bulk of the
spectrum

Proposition 4.5 expresses the k-point eigenvalue correlation functions of fixed random ma-
trices X in terms of polynomials orthogonal with respect to corresponding weight functions.
By using certain Plancherel-Rotach asymptotics concerning the polynomials corresponding
to the GUE and Wishart Ensemble, we may obtain asymptotics for their k-point eigenvalue
correlation functions. Specifically, we will prove the following two results:
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Theorem 4.7. Let {Wn}n∈N be the GUE, and let R(n)
k (x1, . . . , xk) be the k-point eigenvalue

correlation function of the scaled matrix 1√
n
Wn for each n. Then for any c ∈ (−2, 2) and

any distinct values ξ1, . . . , ξk ∈ R,

lim
n→∞

1
(nσ(c))k

R
(n)
k

(
c+

ξ1
nσ(c)

, . . . , c+
ξk

nσ(c)

)
=

k

det
i,j=1

K(ξi, ξj),

where σ is the semicircle density from Theorem 2.14 and

K(ξ, η) =
sinπ(ξ − η)
π(ξ − η)

.

Theorem 4.8. Let {Mn}n∈N be the Wishart Ensemble with parameter p = 1, and let
R

(n)
k (x1, . . . , xk) be the k-point eigenvalue correlation function of the scaled matrix 1

nMn for
each n. Then for any c ∈ (0, 4) and any distinct values ξ1, . . . , ξk ∈ R,

lim
n→∞

1
(nµMP(c))k

R
(n)
k

(
c+

ξ1
nµMP(c)

, . . . , c+
ξk

nµMP(c)

)
=

k

det
i,j=1

K(ξi, ξj),

where µMP is the Marc̆enko-Pastur density from Theorem 2.17 and

K(ξ, η) =
sinπ(ξ − η)
π(ξ − η)

.

Intuitively, these results state that if we pick a point c in the interior of the support of the
spectrum for the scaled GUE or Wishart Ensemble and then rescale the matrices so that
the eigenvalue density is 1 at c, then the local k-point correlation functions around c have
a pointwise limit. The method of proof for these results was introduced by Dyson, who
established the c = 0 case of Theorem 4.7 in [6].

To prove these limit results, we will need to compute the asymptotics of the kernel function

K(x, y) =
n−1∑
j=0

√
w(x)w(y)pj(x)pj(y)

cj

from Proposition 4.5. As a first step, let us express this function in closed form.

Lemma 4.9. Suppose {pk}∞k=0 are monic polynomials orthogonal with respect to a weight
function w, with pk of degree k and norm-squared ck with respect to w. Then for x 6= y,

n−1∑
j=0

pj(x)pj(y)
cj

=
pn(x)pn−1(y)− pn−1(y)pn(x)

cn−1(x− y)
.

Proof. Let qj(x) = 1√
cj
pj(x) for all j. We note that for any j, {qi}j−1

i=0 forms a basis for the
space of polynomials of degree at most j − 1, so qj is orthogonal, with respect to w, to any
polynomial of degree at most j − 1. For j ≥ 2, qj(x) −

√
cj−1
cj
xqj−1(x) is a polynomial of

degree j− 1 (because pj is monic), and hence it is a linear combination of {qi}j−1
i=0 . We note

that ∫ (
qj(x)−

√
cj−1

cj
xqj−1(x)

)
qi(x)w(x)dx

=
∫
qj(x)qi(x)w(x)dx−

√
cj−1

cj

∫
xqj−1(x)qi(x)w(x)dx

= 0
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for all i < j−2. Hence qj(x)−
√

cj−1
cj
xqj−1(x) = Cjqj−1(x) +Djqj−2(x) for some constants

Cj and Dj . Multiplying by qj−2(x)w(x) and integrating, this gives

Dj = −
√
cj−1

cj

∫
qj−1(x)(xqj−2(x))w(x)dx = −

√
c2j−1

cjcj−2
,

as xqj−2(x) =
√

cj−1
cj−2

qj−1(x) + . . .. So for all j ≥ 2 and some constants Cj ,

qj(x) =
(√

cj−1

cj
x+ Cj

)
qj−1(x)−

√
c2j−1

cjcj−2
qj−2(x).

Then

qj(x)qj−1(y)− qj−1(x)qj(y) =

(√cj−1

cj
x+ Cj

)
qj−1(x)−

√
c2j−1

cjcj−2
qj−2(x)

 qj−1(y)

− qj−1(x)

(√cj−1

cj
y + Cj

)
qj−1(y)−

√
c2j−1

cjcj−2
qj−2(y)


=
√
cj−1

cj
(x− y)qj−1(x)qj−1(y)

+

√
c2j−1

cjcj−2
(qj−1(x)qj−2(y)− qj−2(x)qj(y)) ,

so√
cj
cj−1

qj(x)qj−1(y)−qj−1(x)qj(y)
x− y

= qj−1(x)qj−1(y)+
√
cj−1

cj−2

qj−1(x)qj−2(y)−qj−2(x)qj(y)
x− y

.

Summing over j from 2 to n gives√
cn
cn−1

qn(x)qn−1(y)− qn−1(x)qn(y)
x− y

=
n−1∑
j=1

qj(x)qj(y) +
√
c1
c0

q1(x)q0(y)− q0(x)q1(y)
x− y

.

As q1(x) = 1√
c1
x =

√
c0
c1
xq0(x), we have√
c1
c0

q1(x)q0(y)− q0(x)q1(y)
x− y

= q0(x)q0(y),

and substituting qj(x) = 1√
cj
pj(x) gives the desired result.

4.2.1 Hermite polynomials and the GUE

The orthogonal polynomials corresponding to the eigenvalue density functions of the scaled
GUE are based on the classical Hermite polynomials, which are orthogonal with respect to
the weight w(x) = e−x

2
:

Definition 4.10. The Hermite polynomial of degree n is hn(x) = ex
2
(−1)n dn

dxn e
−x2

.

Lemma 4.11. The degree n Hermite polynomial hn has leading coefficient 2n, and∫ ∞
−∞

hn(x)hm(x)e−x
2
dx =

√
π2nn!δmn.
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Proof. From the definition of hn,

hn(x) = −ex
2
(−1)n−1 d

dx

[
dn−1

dxn−1
e−x

2
]

= −ex
2 d

dx
[hn−1(x)e−x

2
] = 2xhn−1(x)− h′n−1(x).

As h0 = 1, hn has leading coefficient 2n by induction. Supposing without loss of generality
that m ≥ n,∫ ∞
−∞

hn(x)hm(x)e−x
2
dx = (−1)m

∫ ∞
−∞

hn(x)
dm

dxm

(
e−x

2
)
dx =

∫ ∞
−∞

dm

dxm
(hn(x)) e−x

2
dx,

where the first equality follows from the definition of hm and the second from integration
by parts m times. If m > n, then this is 0, while if m = n, then dn

dxnhn(x) = 2nn! and so
this gives

√
π2nn!.

To establish the limit law in Theorem 4.7, we will assume the following Plancherel-Rotach
asymptotic of the Hermite polynomials hn, whose proof may be found in [24]:

Proposition 4.12. Let ϕ ∈ [ε, π − ε] for some ε > 0, and let xn = (2n+ 1)1/2 cosϕ. Then

e−
x2

n
2 hn(xn) = 2

n
2 + 1

4 (n!)
1
2 (πn)−

1
4 (sinϕ)−

1
2

[
sin
[(

n

2
+

1
4

)
(sin 2ϕ− 2ϕ) +

3π
4

]
+O

(
1
n

)]
,

where the error term is O(1/n) uniformly over ϕ ∈ [ε, π − ε].

These tools allow us to complete the proof of the asymptotic limit of the k-point eigenvalue
correlation function for the scaled GUE.

Proof of Theorem 4.7. Rescaling the result from Theorem 3.5, the joint density of unordered
eigenvalues of 1√

n
Wn, where Wn is the n× n matrix of the GUE, is given by

ρ(x1, . . . , xn) = Cn
∏
i<j

|xi − xj |2
n∏
i=1

e−
nx2

i
2

for some constant Cn. From Lemma 4.11, we have∫ ∞
−∞

hj

(√
n

2
x

)
hk

(√
n

2
x

)
e−

nx2
2 dx =

√
2π
n

2jj!δjk,

and hj
(√

n
2x
)

has leading coefficient (2n)j/2. Thus the monic polynomials orthogonal with

respect to weight e−
nx2
2 are given by pj(x) = (2n)−j/2hj

(√
n
2x
)
, and pj has norm-squared∫ ∞

−∞
pj(x)2e−nx

2/2dx = n−j−
1
2
√

2πj!.

Hence, by Lemma 4.9, the kernel function of Proposition 4.5 is given for x 6= y by

Kn(x, y) =
e−

n
4 (x2+y2)nn−

1
2 (pn(x)pn−1(y)− pn−1(x)pn(y))√
2π(n− 1)!(x− y)

=
e−

n
4 (x2+y2)

[
hn
(√

n
2x
)
hn−1

(√
n
2 y
)
− hn−1

(√
n
2x
)
hn
(√

n
2 y
)]

2n
√
π(n− 1)!(x− y)

.

Let us set x = c+ ξ
nσ(c) and y = c+ η

nσ(c) , where c ∈ (−2, 2). Then for all sufficiently large
n, we may set θn,1, θn,2, ϕn,1, ϕn,2 ∈ (0, π) such that

cos θn,1 =
√

n

2(2n+ 1)
x, cos θn,2 =

√
n

2(2n− 1)
x,

cosϕn,1 =
√

n

2(2n+ 1)
y, cosϕn,2 =

√
n

2(2n− 1)
y,
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so that θn,1, θn,2, ϕn,1, ϕn,2 → cos−1
(
c
2

)
as n→∞. Then, using Proposition 4.12, this gives

Kn(x, y) =
nσ(c)
π(ξ−η)

(
sin
[(
n
2 + 1

4

)
(sin 2θn,1−2θn,1)+ 3π

4

]
sin
[(
n
2−

1
4

)
(sin 2ϕn,2−2ϕn,2)+ 3π

4

]
(sin θn,1 sinϕn,2)

1
2

−
sin
[(
n
2−

1
4

)
(sin 2θn,2−2θn,2)+ 3π

4

]
sin
[(
n
2 + 1

4

)
(sin 2ϕn,1−2ϕn,1)+ 3π

4

]
(sin θn,2 sinϕn,1)

1
2

+O
(

1
n

))
.

We may compute the Taylor expansions of sin 2θ = 2 sin θ cos θ = 2
√

1− cos2 θ cos θ and
θ = cos−1(cos θ) in terms of 1

n for θ = θn,1, θn,2, ϕn,1, ϕn,2 to obtain the following asymptotic
identities:(

n
2 + 1

4

)
(sin 2θn,1 − 2θn,1) = n

( c
4

√
4− c2 − cos−1

( c
2

))
+ πξ − 1

2
cos−1

( c
2

)
+O

(
1
n

)
(
n
2 −

1
4

)
(sin 2θn,2 − 2θn,2) = n

( c
4

√
4− c2 − cos−1

( c
2

))
+ πξ +

1
2

cos−1
( c

2

)
+O

(
1
n

)
(
n
2 + 1

4

)
(sin 2ϕn,1 − 2ϕn,1) = n

( c
4

√
4− c2 − cos−1

( c
2

))
+ πη − 1

2
cos−1

( c
2

)
+O

(
1
n

)
(
n
2 −

1
4

)
(sin 2ϕn,2 − 2ϕn,2) = n

( c
4

√
4− c2 − cos−1

( c
2

))
+ πη +

1
2

cos−1
( c

2

)
+O

(
1
n

)
Using the trigonometric identity

sin(A− C) sin(B + C)− sin(A+ C) sin(B − C) = sin(A−B) sin(2C)

with

A = n
( c

4

√
4− c2 − cos−1

( c
2

))
+ πξ +

3π
4
,

B = n
( c

4

√
4− c2 − cos−1

( c
2

))
+ πη +

3π
4
,

C =
1
2

cos−1
( c

2

)
,

this gives

Kn

(
c+

ξ

nσ(c)
, c+

η

nσ(c)

)
=

nσ(c)
π(ξ − η)

(
sinπ(ξ − η) sin

(
cos−1

(
c
2

))
sin
(
cos−1

(
c
2

)) + o(1)

)
,

and hence
1

nσ(c)
Kn

(
c+

ξ

nσ(c)
, c+

η

nσ(c)

)
→ sinπ(ξ − η)

π(ξ − η)
.

Together with Proposition 4.5, this establishes the desired result.

4.2.2 Laguerre polynomials and the Wishart Ensemble for p = 1

We may carry out the same argument for the Wishart Ensemble with parameter p = 1.
The orthogonal polynomials corresponding to the eigenvalue density function of the scaled
Wishart Ensemble for p = 1 are based on the classical Laguerre polynomials, which are
orthogonal with respect to the weight w(x) = e−x1x≥0:

Definition 4.13. The Laguerre polynomial of degree n is ln(x) = 1
n!e

x dn

dxn (e−xxn).

Lemma 4.14. The degree n Laguerre polynomial ln has leading coefficient (−1)n

n! , and∫ ∞
0

ln(x)lm(x)e−xdx = δmn.
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Proof. The highest order term of ln(x) is the xn term with coefficient 1
n!e

x dn

dxn (e−x) = (−1)n

n! .
Supposing without loss of generality that m ≥ n,∫ ∞

0

ln(x)lm(x)e−xdx =
1
m!

∫ ∞
0

ln(x)
dm

dxm
(
e−xxm

)
dx =

(−1)m

m!

∫ ∞
0

dm

dxm
(ln(x)) e−xxmdx,

where the first equality follows from the definition of lm and the second from integration
by parts m times (and we note that dk

dxk (e−xxm) = 0 at x = 0 and x → ∞ for all k < m).
If m > n, then this is 0, while if m = n, then dn

dxn ln(x) = (−1)n and so this gives 1 as the
integral of the density for the Gamma distribution.

Analogous to the GUE case, we will assume the following Plancherel-Rotach asymptotic for
the Laguerre polynomials ln, whose proof may be found in [24]:

Proposition 4.15. Let ϕn ∈ [ε, π2 − εn
− 1

2 ] for some ε > 0, and let xn = (4n+ 2) cos2 ϕn.
Then

e−
xn
2 ln(xn) = (−1)n(π sinϕn)−

1
2 (xnn)−

1
4

[
sin
[(
n+

1
2

)
(sin 2ϕn−2ϕn)+

3π
4

]
+O

(
1

(nxn)
1
2

)]
,

where the error term O

(
1

(nxn)
1
2

)
holds uniformly for ϕn ∈ [ε, π2 − εn

− 1
2 ].

Using this, we may derive the asymptotic limit of the k-point eigenvalue correlation function
for the scaled Wishart Ensemble.

Proof of Theorem 4.8. Rescaling the result from Theorem 3.7, the joint density of unordered
eigenvalues of 1

nMn, where Mn is the n×n matrix of the Wishart Ensemble with parameter
p = 1, is given by

ρ(x1, . . . , xn) = Cn
∏
i<j

|xi − xj |2
n∏
i=1

e−nxi1xi≥0

for some constant Cn. From Lemma 4.14, we have∫ ∞
0

lj(nx)lk(nx)e−nxdx =
1
n
δjk,

and lj(nx) has leading coefficient (−n)j

j! . Thus the monic polynomials orthogonal with
respect to weight e−nx1x≥0 are given by pj(x) = (−n)−jj!lj(nx), and pj has norm-squared∫ ∞

0

pj(x)2e−nxdx = n−2j−1(j!)2.

Hence, by Lemma 4.9, the kernel function of Proposition 4.5 is given for x 6= y by

Kn(x, y) =
e−

n
2 (x+y)

1x≥0,y≥0n
2n−1(pn(x)pn−1(y)− pn−1(x)pn(y))
(n− 1)!2(x− y)

=
e−

n
2 (x+y)

1x≥0,y≥0n [ln−1(nx)ln(ny)− ln(nx)ln−1(ny)]
x− y

.

Let us set x = c + ξ
nµMP(c) and y = c + η

nµMP(c) , where c ∈ (0, 4). Then for all sufficiently
large n, we may set θn,1, θn,2, ϕn,1, ϕn,2 ∈ (0, π2 ) such that

cos2 θn,1 =
n

4n+ 2
x, cos2 θn,2 =

n

4n− 2
x,

cos2 ϕn,1 =
n

4n+ 2
y, cos2 ϕn,2 =

n

4n− 2
y,
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so that θn,1, θn,2, ϕn,1, ϕn,2 → cos−1
(√

c
2

)
as n → ∞. Then, using Proposition 4.15, this

gives

Kn(x, y)=
nµMP(c)

π(ξ − η)(xy)
1
4

(
sin
[(
n+ 1

2

)
(sin 2θn,1−2θn,1)+ 3π

4

]
sin
[(
n− 1

2

)
(sin 2ϕn,2−2ϕn,2)+ 3π

4

]
(sin θn,1 sinϕn,2)

1
2

−
sin
[(
n− 1

2

)
(sin 2θn,2−2θn,2)+ 3π

4

]
sin
[(
n+ 1

2

)
(sin 2ϕn,1−2ϕn,1)+ 3π

4

]
(sin θn,2 sinϕn,1)

1
2

+O
(

1
n

))
.

Using the Taylor expansions of sin 2θ = 2 sin θ cos θ = 2
√

(1− cos2 θ)(cos2 θ) and θ =

cos−1
(√

cos2 θ
)

in terms of 1
n for θ = θn,1, θn,2, ϕn,1, ϕn,2, we obtain:

(
n+ 1

2

)
(sin 2θn,1 − 2θn,1) =

n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πξ − cos−1

(√
c

2

)
+O

(
1
n

)
(
n− 1

2

)
(sin 2θn,2 − 2θn,2) =

n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πξ + cos−1

(√
c

2

)
+O

(
1
n

)
(
n+ 1

2

)
(sin 2ϕn,1 − 2ϕn,1) =

n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πη − cos−1

(√
c

2

)
+O

(
1
n

)
(
n− 1

2

)
(sin 2ϕn,2 − 2ϕn,2) =

n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πη + cos−1

(√
c

2

)
+O

(
1
n

)
Using the trigonometric identity

sin(A− C) sin(B + C)− sin(A+ C) sin(B − C) = sin(A−B) sin(2C)

with

A =
n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πξ +

3π
4
,

B =
n

2

(√
c(4− c)− 4 cos−1

(√
c

2

))
+ πη +

3π
4
,

C = cos−1

(√
c

2

)
,

this gives

Kn

(
c+

ξ

nµMP(c)
, c+

η

nµMP(c)

)
=

nµMP(c)
π(ξ − η)

√
c

 sinπ(ξ − η) sin
(

2 cos−1
(√

c
2

))
sin
(

cos−1
(√

c
2

)) + o(1)

 ,

and hence
1

nµMP(c)
Kn

(
c+

ξ

nµMP(c)
, c+

η

nµMP(c)

)
→ sinπ(ξ − η)

π(ξ − η)
.

Together with Proposition 4.5, this establishes the desired result.

Some concluding remarks are in order regarding generalizations of these results. It is not a
coincidence that the limit forms of the kernel functions in Theorems 4.7 and 4.8 are iden-
tical. Asymptotics of the Plancherel-Rotach type, such as in Propositions 4.12 and 4.15,
can be derived in greater generality for polynomials orthogonal to a general weight function
w(x), and these asymptotics can be used to prove the convergence of the kernel function to
the sine kernel given in Theorem 4.7 for general classes of matrices corresponding to these
orthogonal polynomials. We refer the reader to [5] for this approach. We assumed in The-
orem 4.8 a parameter value of p = 1 so that the corresponding orthogonal polynomials are
rescaled Laguerre polynomials. The same result is true for p > 1 ([9, 26]), but there is no
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classical result for the asymptotics of the corresponding polynomials (which are generalized
Laguerre polynomials l(α)

n for parameter α increasing with n).

As Theorems 4.7 and 4.8 describe the k-point eigenvalue correlation function around a
point c in the interior of the support of the limiting spectrum, these results are referred to
as convergence results for the “bulk” of the spectrum. The same method of proof yields a
limit theorem for the “edge” of the spectrum, where c is on the boundary of the support
of the limiting spectrum, using the corresponding Plancherel-Rotach asymptotics in [24].
The limiting kernel function for the edge of the spectrum is different from the sine kernel in
Theorems 4.7 and 4.8, and is instead given by K(x, y) = Ai(x) Ai′(y)−Ai′(x) Ai(y)

x−y where Ai(x)
is the Airy function. We refer the reader to [1] and [5] for details.

Finally, the approach of orthogonal polynomials developed in this section depends on the
ability to factor the joint eigenvalue densities from Theorems 3.5 and 3.7 as a product of
weight functions of the eigenvalues, which relies on the property of invariance under unitary
conjugation for the matrix ensembles, a consequence of the normal distribution of the matrix
entries. That Theorems 4.7 and 4.8 hold for matrices with more general distributions of
matrix entries was a long-standing conjecture, and results in this direction were proven
recently in [8], [9], [10], [25], and [26].
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