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1 Introduction

It is a fundamental goal of modern knot theory to “understand” the Jones polynomial. More
specifically, following Jones’s initial discovery in 1984, a plethora of knot and 3-manifold invariants
were uncovered, known collectively as “quantum invariants.” Furthermore, immediately upon the
discovery of these invariants, it was recognized that they would have a dazzling variety of con-
nections to diverse areas of mathematics and 2-dimensional physics. For example, they can all be
described as representations of the braid group, followed by the application of a special trace; so
the algebra containing the image of these representations would be important—examples include
the Temperley-Lieb algebra, and the Birman-Wenzl-Murakami (BMW) algebra. Thus classical al-
gebra is relevant. What’s more, the images of generators in these representations are examples of
R-matrices, which play an important role in solving statistical mechanical models and quantum in-
tegrable systems in 2 dimensions. So 2-dimensional physics is relevant. (Indeed, going even further
with this point of view, one can take a diagram of a knot and actually define a statistical mechanical
model on the knot diagram to get the same quantum invariants. Thus the combinatorics of knot
diagrams are quite relevant.) To discover more R-matrices, Jimbo, Drinfel’d and others developed
the formalism of quantum groups, specifically, quantum universal enveloping algebras—Hopf defor-
mations Uq(g) of Lie algebras g which carry R-matrices on their modules. This development really
sparked the field, implying the existence of a vast number of distinct, computable knot invariants,
indexed by (at least) the semi-simple finite-dimensional Lie algebras. The algebraic theory of quan-
tum groups itself has become so vast that it is now rightly considered its own field; and for every
development in that field, there is no reason to believe that there might not be some corresponding
application to knot theory. More recently, the theory of Vassiliev or finite-type invariants, which
studies an entire space of maps S1 → S3 at once, has been shown to be intimately related with
quantum invariants; here topology is relevant, but of infinite dimensional spaces.

What is decidedly missing from the above (incomplete) list is a connection with 3-dimensional
topology itself. Indeed, even though one can get 3-manifold invariants from this framework (the so-
called Witten-Reshitikhin-Turaev invariants, see [26], for instance), they are defined by surgery on
a knot, and therefore share the short-comings of the quantum knot invariants: an explicit emphasis
on algebra and 2 dimensions, rather than 3. Thus to “understand” the Jones polynomial is to
identify its intrinsically 3-dimensional context.

In this paper, we present a fascinating conjecture in this direction, the Volume Conjecture, and
explain how one might go about proving it. The Volume Conjecture was initially formulated by
Rinat Kashaev in [8]. His ideas started along the previous lines: in fact, he used the quantum
group perspective which we have mentioned, and it would have initially seemed that his invariant
should fall to the way-side along with so many of the quantum invariants, which can be computed
beautifully but give no readily apparent topological information. However, his invariant was ex-
plicitly constructed to quantize the dilogarithm function, which he knew was relevant to computing
hyperbolic volume. This suggested to him that in the classical limit, his invariant should give the
hyperbolic volume of the knot complement, and indeed, he computed this non-rigorously in several
cases and confirmed it. What’s more, Murakami and Murakami showed in [17] that Kashaev’s in-
variant actually agrees with the colored Jones polynomial, which is the quantum invariant derived
from sl2, and parameterized by an integer N . Explicitly, calling this invariant FN and letting M
denote the complement of the knot in S3, assumed to have a complete hyperbolic structure, the
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new form of the conjecture read

2π × lim
N→∞

|FN |
N

= vol(M)

Things had started to look interesting.
Our specific goal is to describe a framework in which the state-sum model for the colored Jones

polynomial, calculated from a knot diagram, is shown to agree, asymptotically, with the hyperbolic
volume of M , computed via a specific hyperbolic triangulation. It is obvious from the construction
that the algebra of the quantum knot invariants contains deep information about the hyperbolic
structure, an exciting realization; but the exact relationship remains unclear. It does not help
things that the expositions of this approach to the conjecture to be found in the literature tend to
be unclear and fragmented; furthermore, the necessary background is scattered across distinct and
dense references, due to the conjecture’s interdisciplinary nature. We hope that our exposition will
make this fascinating conjecture and its ramifications more accessible.

In fact, even before Kashaev, it was already known that there was a 3-dimensional framework for
the colored Jones polynomial, constructed by Turaev in [25], where one essentially takes a state-
sum over a triangulation of the manifold M (this “essentially” turns out to be a rather thorny
caveat, at least computationally). This should, in principle, given an even more direct framework
for the Volume Conjecture; as of yet, this perspective has not been pursued successfully. If it
were, it could be seen as a sort of simplicial approximation to Witten’s famous Chern-Simons path
integral definition of the Jones polynomial [28], which is 3-dimensional, and quite beautiful, but
unfortunately is defined only at the physical level of rigor. Many generalizations of the Volume
Conjecture reinforce this connection; other generalizations attribute additional hyperbolic structure
to the quantum invariants, for example, determination of deformations of the complete structure.
For more information about such generalizations, see [18, 30, 6, 5]. Furthermore, it is suggested in
[17] that the proper generalization of the conjecture to non-hyperbolic knots is to replace vol(M)
by the simplicial norm; if this generalization holds, it is an exciting corollary that the Vassiliev
invariants determine the unknot.

In this paper, we concentrate on the background to the original conjecture, giving an informal
overview of the machinery needed to compute the quantum knot invariants in the first place, and
of the machinery needed to understand the hyperbolic volume computation. We choose to use
the categorical framework of the Ribbon category, the Reshitikhin-Turaev functor, and quantum
groups, necessitating, unfortunately, that we neglect many of the other frameworks which are
available; it would be quite fascinating to understand how they themselves are related to the
hyperbolic volume.

In §2, we give an overview of Hopf algebras and ribbon categories. Anyone familiar with these
concepts can safely skip over it. In §3 we present the framework of the Reshitikhin-Turaev functor
and the derivation of knot invariants from the ribbon category. In §4 we present the quantization of
sl2 and its ribbon Hopf algebra structure. We use this to produce the colored jones polynomial in §5,
and describe how to compute it from a state-sum model. In §6 we give the necessary background
in hyperbolic geometry. Throughout, we omit many proofs, placing emphasis on the ideas and
their interrelationships. Finally, in §7, our true work begins: we present the Volume Conjecture,
and the tantalizingly explicit relationship between the algebra of its state-sum formulation and the
combinatorics of a hyperbolic triangulation of the knot complement.

The one thing we assume is the most rudimentary of knowledge about knot theory. This
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amounts essentially to familiarity with the Reidemeister moves, and what a skein relation is.

2 Ribbon Hopf Algebras and their Representations

We present the important algebraic properties of Hopf algebra representations, and abstract them
to the setting of general categories. We follow [15] and [2].

Fix a field k. First, recall the definition of an algebra:

Definition 2.1. An associative k-algebra A with unit is a triple consisting of (A, m, η), where

1. A is a vector space over k.

2. m is a vector space map m : A ⊗ A → A, “multiplication,” written m(a ⊗ b) = ab, which
is associative: (ab)c = a(bc), or in other words, m ◦ (m ⊗ id) = m ◦ (id ⊗m) as maps from
A⊗A⊗A → A.

3. η is a vector space map η : k → A satisfying aη(1) = a = η(1)a. Taking λ : k ⊗ A →
A and ρ : A ⊗ k → A to be the canonical isomorphisms, we can write this condition as
m ◦ (η ⊗ id) ◦ λ−1 = id = m ◦ (id⊗ η) ◦ ρ−1, as maps A → A. Both η and η(1) are called the
unit of A, the latter written 1 ∈ A

Remark 2.1. More generally, we could work with modules over a commutative ring, but we will
stick with fields and vector spaces for convenience.

Flipping all the maps, we get the “dual” notion of a coalgebra:

Definition 2.2. A coassociative k-coalgebra A with counit is a triple consisting of (A,∆, ε), where

1. A is a vector space over k

2. ∆ is a vector space map ∆ : A → A ⊗ A, “comultiplication,” which is coassociative: (id ⊗
∆) ◦∆ = (∆⊗ id) ◦∆ as maps A → A⊗A⊗A

3. ε is a vector space map ε : A → k, “counit.” Letting λ : k⊗A → A and ρ : A⊗ k → A be the
canonical isomorphisms as before, ε satisfies λ ◦ (ε ⊗ id) ◦∆ = id = ρ ◦ (id ⊗ ε) ◦∆ as maps
A → A.

We pause for a brief digression on notation: because A⊗A is spanned by the set {a⊗a′ : a, a′ ∈
A}, we can write ∆(a) =

∑n
i=1 ai ⊗ a′i in some (non unique) way. There is a short-hand for this,

called Sweedler’s notation, where we drop the indices and merely remember which factor is which:
∆(a) =

∑
a(1) ⊗ a(2). If desired, even the summation symbol can be dropped, ∆(a) = a(1) ⊗ a(2),

although we will not do this. When we compose comultiplications, we use multiple subscripts: for
example, the value of (∆⊗ id) ◦∆ on a is

∑ ∑
a(1)(1)⊗ a(1)(2)⊗ a(2), where we have written a(1)(1)

for (a(1))(1) and a(1)(2) for (a(1))(2), and this generalizes to arbitrarily many subscripts. We can
then express the coassociativity of ∆, and the counit property of ε, in Sweedler notation: the first
becomes

∑ ∑
a(1)(1) ⊗ a(1)(2) ⊗ a(2) =

∑ ∑
a(1) ⊗ a(2)(1) ⊗ a(2)(2) =:

∑
a(1) ⊗ a(2) ⊗ a(3),
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and the second becomes ∑
ε(a(1))a(2) = a =

∑
a(1)ε(a(2))

In this paper, we’ll be interested in the case where the vector space A has an algebra and a
“compatible” coalgebra structure. To make this compatibility precise, note that we can transfer
any algebra structure from A to A⊗A: if A is an algebra, we get a multiplication on A⊗A via

mA⊗A(a⊗ b, c⊗ d) = ac⊗ bd

for a, b, c, d ∈ A, and a unit via
ηA⊗A(1) = 1⊗ 1

for 1 ∈ A. An analogous construction transfers any coalgebra structure from A to A⊗A. Therefore,
if A is both an algebra and coalgebra, so will A ⊗ A be, and we can require that ∆, ε be algebra
maps, e.g.

∆(ab) = mA⊗A(∆(a),∆(b)) = mA⊗A

(∑
a(1) ⊗ a(2),

∑
b(1) ⊗ b(2)

)
=

∑ ∑
a(1)b(1) ⊗ a(2)b(2),

and that m, η be coalgebra maps. These structures are then said to be compatible, and A is
called a bialgebra. Finally, we want one more piece of structure, a sort of “inverse” S, relating the
multiplication and comultiplication.

Definition 2.3. A Hopf algebra is a bialgebra (A, m, η,∆, ε) along with a vector space map S :
A → A, the “antipode,” satisfying

1.
∑

S(a(1))a(2) = η(ε(a)) =
∑

a(1)S(a(2)). In other words, η◦ε = m◦(id⊗S)◦∆ = m◦(S⊗id)◦∆

Remark 2.2. Furthermore, it follows from the definition, after easy computations, that S is an
antialgebra map, an anticoalgebra map, and is unique (uniqueness is proved in much the same way
as the uniqueness of a group inverse).

Example 1. Suppose g is a finite-dimensional Lie algebra over C. We can then form an associative
algebra with unit, the tensor algebra

T (g) = C⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · (1)

with multiplication coming from the natural tensor product of two elements in T (g), and the
unit being 1 ∈ C. There is a natural inclusion g ⊂ T (g) by sending g to the second summand
in (1); the elements in the image of this inclusion are called primitive. Evidently, the primitive
elements generate T (g) as an algebra, and we write this multiplication in the standard way, using
juxtaposition: e.g., the product of two primitive elements v, w is written vw.

Furthermore, we can put a Hopf algebra structure on T (g). Indeed, it is sufficient to define the
comultiplication, counit, and antipode on primitive elements of T (g), and then extend them by
linearity and as algebra maps in the first two cases, and by linearity and as an antialgebra map in
the case of the antipode. Explicitly, letting v ∈ T (g) be a primitive element, we have

∆(v) = v ⊗ 1 + 1⊗ v, ε(v) = 0, S(v) = −v

where of course the tensor product is the one from the expression ∆ : T (g) → T (g)⊗ T (g). If one
has never seen Hopf algebras before, it is a good exercise to check that this does in fact define a
Hopf algebra structure.
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The important thing about this Hopf algebra structure for us is that it descends to the universal
enveloping algebra. Explicitly, if we let I ⊂ T (g) be the two-sided algebra ideal generated by the
elements vw − wv − [v, w], for all primitive elements v, w ∈ g ⊂ T (g) ([, ] is the Lie bracket), then
one can check that, with the above Hopf algebra structure, I is in fact a Hopf algebra ideal1. Then
the universal enveloping algebra U(g) = T (g)/I becomes a Hopf algebra, with comultiplication,
counit, and antipode exactly the same as those for T (g).

Remark 2.3. As an irrelevant aside, note that there is an intrinsic way to define the Hopf algebra
structure on U(g) using the universal perspective. Briefly, let φ be the canonical isomorphism from
U(g ⊕ g) → U(g) ⊕ U(g), let α : g → g ⊕ g be the diagonal map v +→ (v, v), and let U(α) be
the unique map U(g) → U(g ⊕ g) which exists by the universal property of U(g). Then one can
check that ∆ = φ ◦ U(α). Similarly, with β : g → {0} being the unique map into the unique
0-dimensional Lie algebra, and γ : g → gop being the canonical isomorphism between a Lie algebra
and its opposite, we have ε = U(β), S = U(γ).

The most important feature of U(g) turns out to be a defect, in a sense that we shall see in the
course of this section and the next. Let τ : U(g)⊗U(g) be the flip map defined by τ(v⊗w) = w⊗v.
Then defining ∆op = τ ◦ ∆, it can be easily seen that in the above example, ∆ = ∆op, i.e., U(g)
is cocommutative. Furthermore S2 = id, and it can be shown that this is always a consequence
of cocommutativity. A large part of the history of the study of Hopf algebras was spent looking
for natural examples which are neither commutative nor cocommutative; in this paper, we will see
that the existence of such algebras has deep ramifications in knot theory. By the end of §3, it will
be evident that cocommutative Hopf algebras give no topological information, from our point of
view.

We return now to general Hopf algebras; our interest in them stems from the excellent algebraic
properties of their representations. First, let A be an algebra, and recall the definition of an
A-module or representation of A:

Definition 2.4. Given a vector space V , a representation of A into V is an algebra map ρV : A →
End(V ). V is called an A-module.

Given a ∈ A, we’ll write the action of ρ(a) on v ∈ V as a.v ∈ V for v ∈ V, a ∈ A. We also have
morphisms between A-modules:

Definition 2.5. An A-linear map f : V → W between A-modules is a vector space map satisfying

a.f(v) = f(a.v)

i.e. a map which commutes with the actions of A on V and W .

Remark 2.4. One can similarly define right A-modules via an algebra map from Aop → End(V ),
and there are also dual notions of left and right comodules for coalgebras.

With A-linear maps as the morphisms, the set RepA of all A-modules has the structure of
a category, equipped with a natural forgetful functor to the category of vector spaces. Likewise,
Repfin

A is the category of finite-dimensional A-modules.
1That is, I ⊂ ker(ε), ∆(I) ⊂ I ⊗ T (g) + T (g) ⊗ I (the appropriate duals to the conditions on an algebra ideal),

and furthermore, S(I) ⊂ I.
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When A is a Hopf algebra, its coalgebra and antipode give rise to extra structure on these
categories, in the form of tensor products and duals. For any algebra A, if V and W are A-modules,
then V ⊗W is an A⊗A module via

(a⊗ a′).(v ⊗ w) = a.v ⊗ a′.w

If A is a Hopf algebra, it is then straightforward to check that

a.(v ⊗ w) := ∆(a).(v ⊗ w) (2)

turns V ⊗W into an A-module (use the compatibility of ∆ and m). Likewise, the counit ε turns k
into an A-module, the “trivial” A-module, via

a.1 := ε(a) (3)

for 1 ∈ k (and of course, in both cases, extended by linearity).
The importance of these “coalgebra” representations, in contrast to trivial representations on

tensors and k such as a.(v ⊗ w) := a.v ⊗ w and a.1 := 1, which exist for all algebras A, lies in the
fact that by using the coalgebra structure, many canonical vector space maps become A-linear, so
that they can descend to RepA. For example, consider the canonical isomorphism λ : k⊗ V → V ,
defined by λ(1, v) = v. The condition that λ be A-linear is

λ(a.(1⊗ v)) = a.λ(1⊗ v) (4)

Given the module structure on tensor products from (2) and on k from (3), we transform the left
hand side of (4) as follows:

λ(∆(a).(1⊗ v)) = λ(a(1).1⊗ a(2).v) = λ(ε(a(1))⊗ a(2).v) = ε(a(1))(a(2).v) =
(
ε(a(1))(a(2))

)
.v

(with the last equality following from the multiplicativity property of the representation). The right-
hand side of (4) is simply a.v. In other words, (4) gives us precisely the counit axiom a = ε(a(1))a(2).

Thus, when A is a bialgebra, there is an entire tensor product structure on RepA and Repfin
A

(we have not yet used the antipode of a Hopf algebra). We want to abstract this for general
categories:

Definition 2.6. A monoidal category is a category C equipped with

1. a functor ⊗ : C × C → C called the tensor product, with ⊗(V,W ) written V ⊗W

2. an object I called the unit object

3. a natural isomorphism, “associativity,” written α, between functors ⊗◦(id×⊗) : C×C×C → C
and ⊗◦(⊗× id) : C×C×C → C. Its components αA,B,C must satisfy the “coherence property”

((A⊗B)⊗ C)⊗D

αA⊗B,C,D

!!

αA,B,C⊗D
"" (A⊗ (B ⊗ C))⊗D

αA,B⊗C,D "" A⊗ ((B ⊗ C)⊗D)

A⊗αB,C,D

!!
(A⊗B)⊗ (C ⊗D) αA,B,C⊗D

"" A⊗ (B ⊗ (C ⊗D))

where the same symbol refers either to an object of C or its identity morphism
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4. natural isomorphisms, “left,” respectively “right,” identity, written λ and ρ, between functors
(I ⊗ ·) : C → C and id : C → C, and (· ⊗ I) : C → C and id : C → C, respectively. They must
satisfy the coherence property

m (A⊗ I)⊗B

ρA⊗B ##!!!!!!!!!

αA,I,B "" A⊗ (I ⊗B)

A⊗λB$$"""""""""

A⊗B

The motivation for these particular coherence properties lies in a theorem of MacLane, which
states that they imply the commutativity of all other “reasonable” diagrams. (See [14] for an
introduction to this sort of category theory). Furthermore, if the isomorphisms α,λ, ρ are all
identity morphisms, then we call C a strict monoidal category, and another important theorem
of MacLane states that every monoidal category is equivalent to a strict one. Thus, if we only
care about our categories up to equivalence, there is no loss of generality in assuming they are
strict. This saves much suppression-of-isomorphisms (or even worse, much actually-writing-out-of-
isomorphisms) when writing out identities in monoidal categories.

Now, our previous discussion on the representation theory of bialgebras extends to

Theorem 2.1. If A is a bialgebra, then RepA and Repfin
A are monoidal categories via (2) and

(3), k being the identity object.

The necessary coherence conditions follow from coassociativity of ∆ and the counit axioms, and
are easily, albeit tediously, checked.

After tensor products, we would like duals. To avoid issues with dual bases, we will restrict our
attention to finite-dimensional vector spaces and Repfin

A ; at first, let us consider Repfin
A composed

with its forgetful functor to the category of vector spaces. Every object V ∈ Repfin
A has a dual

vector space V ∗ = Hom(V, k). For v∗ ∈ V ∗, v ∈ V , the dual pairing 〈v∗, v〉 = v∗(v) defines a linear
map

evV : V ∗ ⊗ V → k, ev(v∗ ⊗ v) = 〈v∗, v〉 (5)

and extended to V ∗ ⊗ V by linearity. Furthermore, in the finite dimensional case, if {ei} is a basis
for V , then there is a unique dual basis {ei} defined by the pairing

〈
ei, ej

〉
= δij . In this case we

get a “copairing,” a (linear) map

coevV : k → V ⊗ V ∗, 1 +→
∑

i

ei ⊗ ei (6)

which, one should check, is actually independent of the choice of basis. These maps allow us
to formally construct many of the interesting objects of linear algebra. For example, for each
f ∈ End(V ), we know there is a dual map f∗ ∈ End(V ∗) defined by 〈f∗(v∗), v〉 = 〈v∗, f(v)〉.
Indeed, using the above structure maps, this can be written

f∗ : V ∗ = V ∗ ⊗ 1 id⊗coev−→ V ∗ ⊗ V ⊗ V ∗ id⊗f⊗id−→ V ∗ ⊗ V ⊗ V ∗ ev⊗id−→ 1⊗ V ∗ = V ∗ (7)

Writing out the above on a basis for V , it’s an easy (and actually, fun) computation to see that
the two definitions agree. (We’ll go through the explicit details of a similar, but slightly more
sophisticated, computation later on).
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Remark 2.5. One might wonder how we chose the order of V and V ∗ in the tensor products in
(5) and (6). Indeed, the choice we made is called a left dual. The choice was arbitrary, but what
is important is that the two choices are not trivially the same, in general; it only seems that way
because we have a flip map τ between tensor products in a vector space. We’ll get to this point in
a moment.

Let’s return to A-modules: can the above structure be extended to Repfin
A ? Suppose the

representation ρV : A → End(V ) defines an A-module structure on V ; then, for each a ∈ A, the
map ρ∗V , defined by sending a to the dual map (ρV (a))∗ ∈ End(V ∗) of ρV (a), is a natural candidate
for an A-module structure on V ∗. However, it is easy to check that this is a right-module, not left,
due to the equality (f ◦ g)∗ = g∗ ◦ f∗. We need to compose with an antialgebra map to flip the
factors, and the antipode saves the day: one can check that the map

ρV ∗(a) = ρV (S(a))∗

is a well-defined representation. In terms of the dual pairing, we have

〈a.v∗, v〉 = 〈v∗, S(a).v〉

Just as in the tensor case, using this novel structure gives us more than we bargained for: one
can check that the antipode axiom is precisely what’s needed to ensure that evV and coevV are
A-linear for all modules V ∈ Repfin

A and the trivial module structure on k.
Just as for tensors, we can abstract this dual structure:

Definition 2.7. If C is a monoidal category and V an object of C, an object V ∗ of C is said to be
a left dual for V if there are morphisms evV : V ∗ ⊗ V → I and coevV : I → V ⊗ V ∗ making the
following diagrams commute:

V
coev⊗id! (V ⊗ V ∗)⊗ V

V

id

"

# id⊗ev
V ⊗ (V ∗ ⊗ V )

α

"
V ∗ id⊗coev! V ∗ ⊗ (V ⊗ V ∗)

V ∗

id

$
# ev⊗id

(V ∗ ⊗ V )⊗ V ∗

α

$

where we’ve suppressed certain isomorphisms (or not, in the strict case).

Suppose V,W are objects in C with left duals V ∗, W ∗, and ψ : U → V is a morphism of C.
Then the composite

V ∗ = V ∗ ⊗ 1 id⊗coev−→ V ∗ ⊗ U ⊗ U∗ id⊗ψ⊗id−→ V ∗ ⊗ V ⊗ U∗ ev⊗id−→ 1⊗ U∗ = U∗

defines a dual morphism ψ∗ : V ∗ → U∗ (this generalizes (7)). If we choose a unique left dual
structure V ∗, evV , coevV for every object V of some category C, we obtain a contravariant functor
∗ : C → C called the dual object functor, sending V +→ V ∗, ψ +→ ψ∗.

Definition 2.8. A monoidal category C is said to be rigid if every object has a (uniquely made)
choice of left dual, and if the dual object functor is an anti-equivalence of categories.
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Remark 2.6. If C is a rigid monoidal category, then the anti-equivalence of ∗ implies the existence
of a bijection from Hom(U ⊗ V,W ) to Hom(U, W ⊗ V ∗), φ being sent to the map

U = U ⊗ 1 idU⊗coevV−→ U ⊗ V ⊗ V ∗ φ⊗idV ∗−→ W ⊗ V ∗

In particular, there is a bijection between morphisms U ⊗ V → I and U → V ∗, and between
morphisms V → W and I → W ⊗ V ∗

Remark 2.7. One can check that there are natural isomorphisms between (U ⊗ V )∗ and V ∗ ⊗ U∗

for all U, V ∈ C.

Remark 2.8. Note, however, that U∗∗ is not isomorphic to U , in general.

Again, using the structure from (5) and (6), it straightforward to prove that

Theorem 2.2. If A is a Hopf algebra, the category Repfin
A is rigid monoidal.

Continuing on our quest to do all of linear algebra in our category Repfin
A , we want to abstract

the trace of a map f : V → V . Again, let {ei} be a basis for V ; then, the matrix-definition of
trace is easily seen to be equivalent to tr(f) =

〈
ei, f(ei)

〉
, once we identify V ∼= V ∗ appropriately.

Indeed, even in cases where no such identification exists, this previous definition gives rise to the
more general

tr = evV ◦ τV,V ∗ ◦ (f ⊗ idV ∗) ◦ coevV : k → k (8)

where τV,V ∗ is the map τV,V ∗(v ⊗ v∗) = v∗ ⊗ v. If we rewrite the original dual-pairing definition of
trace, in the case of vector spaces, as a map k → k defined to take the value tr(f) on 1, it is another
little exercise to see that it agrees with (8); one need only recall the definitions of coev and ev.

The formula from (8) almost gives an A-linear trace, except that the flip map τV,W is usually
not A-linear (though it will be if A is cocommutative). What we need is for Repfin

A to have some
A-linear flip, called a braiding :

Definition 2.9. A braided monoidal category C is a monoidal category with a natural isomorphism
σ, the “braiding,” between the functors ⊗ : C × C → C and ⊗ ◦ τ : C × C → C (τ being the flip
functor) and a natural isomorphism α satisfying the coherence property

A⊗ (B ⊗ C)
σ! (B ⊗ C)⊗A

(A⊗B)⊗ C

α

!

B ⊗ (C ⊗A)

α
!

(B ⊗A)⊗ C
α
!

σ⊗
1

!

B ⊗ (A⊗ C)

1⊗
σ

!
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In general, the category Repfin
A need not be braided; indeed, the multiplications ∆ (defining

the representation on V ⊗W ) and ∆op (defining the representation on W ⊗ V ) can be essentially
unrelated. On the other hand, when A is cocommutative, so that ∆ = ∆op, the standard vector
space flip τ gives a braiding. In between these two cases is what is called a quasitriangular Hopf
algebra, where ∆ and ∆op differ by a sort of inner automorphism:

Definition 2.10. A Hopf algebra A is quasitriangular if it is equipped with an invertible element
R ∈ A⊗A satisfying

1. R∆(a) = (τ ◦∆)(a)R

2. (∆⊗ 1)(R) = R13R23

3. (1⊗∆)(R) = R13R12

where, writing R =
∑

r(1) ⊗ r(2) (Sweedler’s notation), we have, for example, R12 =
∑

r(1) ⊗
r(2) ⊗ 1 ∈ A⊗A⊗A

R is called the universal R-matrix.

Theorem 2.3. If A is a quasitriangular Hopf algebra, then Repfin
A is braided, with σV,W : V ⊗W →

W⊗V equal to τV,W ◦ρV⊗W (R) where τ is the standard vector space flip, R ∈ A⊗A is the universal
R-matrix, and ρV⊗W is the natural representation of A⊗A on V ⊗W .

The braiding property follows from 1. of Definition 2.10, and the coherence rules follow from
2. and 3.

Therefore, if A is a quasitriangular Hopf algebra, and f : V → V is a morphism of Repfin
A , we

define its A-trace to be the map

evV ◦ τV,V ∗ ◦ ρV⊗V ∗(R) ◦ coevV : k → k

First we can ask: does this correspond to the trace of an operator, in the traditional matrix sense?
Indeed, the answer is yes. Define u ∈ A to be the element m((S ⊗ id)(τ(R))), in other words, if
R =

∑
r(1) ⊗ r(2), then

u = S(r(2))r(1) (9)

Theorem 2.4. If ρV is a finite-dimensional representation of a quasitriangular Hopf algebra A,
and f : V → V is some A-linear map, then the A-trace of f evaluated at 1 ∈ k is equal to the
standard matrix trace tr(ρV (u) ◦ f), where u is as in (9).

Proof. We will compute each in terms of a basis {ei} for V . By the definition of matrix trace, we
have

tr(ρV (u) ◦ f) =
〈
ei, u.f(ei)

〉
=

〈
ei, (S(r(2))r(1)).f(ei)

〉
(10)

By examining its definition above, we see that the A-trace sends

1 +→ ei ⊗ ei +→ r(1).ei ⊗ r(2).e
i +→ r(2).e

i ⊗ r(1).ei +→
〈
r(2).e

i, r(1).ei
〉

By the definition of the dual module, and then by multiplicativity of representations,
〈
r(2).e

i, r(1).ei
〉

=
〈
ei, S(r(2)).(r(1).ei)

〉
=

〈
ei, (S(r(2))r(1)).f(ei)

〉

which agrees with (10), as desired.
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One would also like the A-trace to respect tensor products, so that the trace of a tensor product
of maps is the product of the traces of its summands. However, one can compute

∆(u) = (τ(R)R)−1(u⊗ u). (11)

For the trace to be multiplicative, after going through the computations, one sees that we need
∆(u) = u⊗ u.

Remark 2.9. This element u is important for another reason, namely because one can prove that
it implements the antipode squared, by conjugation:

S2(a) = uau−1 (12)

for all a ∈ A. Now, note that there is a canonical isomorphism of vector spaces, φV : V → V ∗∗,
defined by

〈
φV (ei), ej

〉
=

〈
ej , ei

〉
. When one checks whether this map is A-linear, one runs into the

problem that S2(a) 0= a. However, if we make a new map φ′V = φV ◦ ρV (u), then we are instead
hoping for the identity S2(a)u = ua, which is equivalent to (12). Thus, for any quasitriangular
algebra A, there are canonical isomorphisms between double duals in Repfin

A . However, these
isomorphisms φ′ are not tensorial: we do not have φ′V⊗W = φ′V ⊗ φ′W , because ∆(u) 0= u ⊗ u, the
same obstruction to multiplicativity of the A-trace.

Remark 2.10. There is yet another perspective on this whole story. Recall that in any rigid category,
we have a left dual evV : V ∗⊗V → I. However, now that we have a twist σV ∗,V , we have a candidate,

ẽvV = evV ◦ σV,V ∗ : V ⊗ V ∗ → I (13)

for a “right” dual. Moreover, by Remark 2.6, there is a corresponding morphism JV : V ∗∗ → V .
One can check, from the details of the construction of Remark 2.6, that this map is exactly φ′V
(from Remark 2.9) when we’re in Repfin

A . Furthermore, this telling of the story was completely
general, depending only on the structure of a rigid, braided category, and so we conclude that
any such category C has isomorphic double duals via JV . We still, however, have JU ⊗ JV =
σW,V ◦σV,W ◦JV⊗W (instead of tensoriality—compare to (11)), and, likewise, the maps ẽvV are not
tensorial and therefore do not define a right dual structure on C. Finally, C also has an “A-trace,”

ẽvV ◦ (f ⊗ idV ∗) ◦ coevV : k → k

for all morphisms f : V → V , which still does not respect tensor products.

The solution to our tensoriality troubles is to balance our category:

Definition 2.11. A rigid, braided category is called balanced, or ribbon, if it is equipped with an
automorphism bV of V , for every object V ∈ C, such that

1. bU ⊗ bV = σW,V ◦ σV,W ◦ bV⊗W

2. bV ∗ = (bV )∗

3. bI = idI
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Then we can check that the map kV = JV ◦ b−1
V is an isomorphism V → V ∗∗ satisfying

kU⊗V = kU ⊗ kV

(up to the isomorphism between the ranges, (V ⊗W )∗∗ and V ∗∗ ⊗W ∗∗, of the left and right hand
sides, given by Remark 6.). Likewise, the map

ẽvV = evV ◦ (b−1
V ∗ ⊗ id) ◦ σV,V ∗ : V ⊗ V ∗ → I

gives a right dual structure, along with the similarly defined map c̃oevV (we haven’t given a
definition of right dual structure, but it should be easy to deduce from Definitions 2.7 and ??).
Finally, for a map f : V → V , the map

qtr(f) = ẽvV ◦ (f ⊗ id) ◦ coevV

replaces the old “trace” and is called the quantum trace of f ; it is an easy exercise to check that it
is tensorial. We define the quantum dimension of an object V ∈ C to be qtr(idV ) (= ẽvV ◦ coevV ).

Definition 2.12. A ribbon Hopf algebra A is a quasitriangular Hopf algebra equipped with an
invertible central element ν, the “ribbon” element, satisfying:

0. ν2 = uS(u)

1. ∆(ν) = ((τ(R)R)−1(ν ⊗ ν)

2. S(ν) = ν

3. ε(ν) = 1

where u is as in (9), and the numbering is arranged to demonstrate the analogy with Definition
2.11.

Thus we see that in general, Repfin
A fails to be balanced because the element uS(u) of A has

no square root. If it does we call A ribbon, and the following should be no surprise:

Theorem 2.5. If A is a ribbon Hopf algebra, then Repfin
A is a ribbon category with bU = ρU (ν) (it

is A-linear because ν is central), and the map kV is φV ◦ ρV (ν−1u), where φV is still the canonical
vector space isomorphism V → V ∗∗.

It is worth giving the element ν−1u its own notation, though there is nothing standard in the
literature. Let us write κ = ν−1u.

Remark 2.11. Just as in Theorem 2.4, we can prove that

qtr(f) = tr(ρV (κ) ◦ f),

where f : V → V is a morphism from Repfin
A and A is a Ribbon Hopf algebra. Similarly, we can

compute
ẽvV (ei ⊗ ej) =

〈
ej , ρV (κ).ei

〉

c̃oevV (1) =
∑

i

ei ⊗ (ρV (κ))−1.ei
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Remark 2.12. This close correspondence between categories of Hopf algebra modules and rigid,
monoidal categories is an example of a general “Tannaka-Krein type” duality. Indeed, under certain
conditions it can be shown that every rigid monoidal categories can be written as the category of
representations for some Hopf algebra (see [2] for details).

Remark 2.13. Note that when we say a category C is ribbon, we mean implicitly that it is braided,
rigid, and monoidal as well. Furthermore, we will refer to the defining morphisms of a ribbon
category (the braidings, ribbons, eval and coeval maps, etc.) collectively as structure maps.

Finally, before we turn to some topology, let us try to relate these past results to our first
example. However, there is not much to say: it is obvious that taking R = 1 ⊗ 1 makes any
cocommutative Hopf algebra quasitriangular, and, because S2 = id in this case, ν = 1 is a “ribbon”
element. Therefore U(g) is trivially a ribbon Hopf algebra, and we are left searching for non-trivial
examples.

3 “Ribbon Category” and the Reshetikhin-Turaev Functor

There is a remarkable correspondence, relating tangles in R3 and the categorical machinery of the
previous section, which gives both an intuitive understanding of many of the maps we went through
defining, and a powerful framework for knot and tangle invariants. This material can be found in
[2, 10]. The original paper reference is [21]. Diagrams are modifications of those in [2].

First, we place the set of tangles into a categorical setting. We assume the reader is familiar with
the standard definition of tangles in R2 × [0, 1], and more precisely, (n, m)-tangles, with n strands
at the top (R2 × {0}) and m at the bottom (R2 × {1}), defined up to ambient isotopy fixing the
top and bottom planes. Furthermore, we will consider framed tangles, which we choose to think of
as embeddings of rectangles and annuli, replacing line segments and circles (equivalently, a framed
tangle is a smoothly embedded tangle along with a choice of framing of the normal bundle of the
embedding). We will require these ribbon tangles to be orientable, which for us means there can
be annuli but no Möbius bands, and the each side of each ribbon must face in the same direction at
both top and bottom. We will also orient our tangles in the other sense, i.e., we make a choice of
direction along the core of each ribbon, either towards the top or the bottom. (It is this meaning
that we will be referring to when we mention orientation, for the rest of this section). One figure
should suffice to make this all clear (in our depictions of tangles, we will assume 0 is at the top and
1 is at the bottom):

1

0

Figure 1: Diagram of a (3,3) oriented ribbon tangle, or “ribbon”
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Such an oriented ribbon tangle R, which we will refer to as a ribbon from now on, intersects
R2×{x}, for x ∈ {0, 1}, in some number of ordered line segments, each of which inherits one of two
orientations corresponding to the local orientation of R at that segment. Refer to the orientation
agreeing with the direction from 0 to 1 as + (the “downward” direction, in our figures), and the
other direction as − (upward). Then, by writing down the directions of the segments in order, we
get two words on the symbols + and −, call them win

R and wout
R , corresponding to x = 0 and x = 1,

respectively. For example, letting R be the tangle from Figure 1, we have

win
R = + +−, wout

R = −+ +

If we have two ribbons R and S such that wout
R = win

S , then we get another ribbon, S ◦ R, by
stacking R on top of S, gluing them along the common plane, and then rescaling. Formally, let O
be the set of all words on {+,−}, including the empty word ∅. Let Rib denote the set of (isotopy
classes of) ribbons. Then we get a category, with objects O, and with Hom(x, y) = {R ∈ Rib|win

R =
x, wout

R = y} for x, y ∈ O, with composition as just defined (the identity morphism on a word x is
the ribbon consisting of vertical strips of the appropriate number and orientations). We will then
abuse notation as follows:

Definition 3.1. Rib is the category just defined, with objects O and morphisms (also) Rib.

Remark 3.1. End(∅) is precisely the set of isotopy classes of framed, oriented links.

Furthermore, we can define a tensor product on Rib as follows: the tensor of two sequences is
just their concatenation, w⊗v = wv, and the tensor of two tangles is just side-by-side juxtaposition
(again, in our depictions, this will be left-to-right). It is then immediate that Rib forms a strict
monoidal category, with identity object the empty sequence ∅. What’s more, Rib is a ribbon
category: taking the dual of a word reverses it and switches +’s and −’s; as for the rest, we’ve
shown the structure morphisms for + in Figure 2 (notation from §2):

Figure 2: Structure morphisms for +

Taking the dual of a morphism rotates it by 180◦; taking the dual of the above maps gives us
the structure morphisms for −. The structure morphisms for other objects are determined uniquely
by tensoriality considerations. It is not difficult to check that the defining relations for a ribbon,
braided, rigid category are satisfied. For the proof, see [10].

Remark 3.2. This elucidates, for example, the picturesque terminology for braids and ribbons.

In fact, Rib can be considered the “free” (strict) ribbon category. To explain what we mean
by this, we first note that every isotopy class of ribbons can be represented (highly non-uniquely)
by a tangle diagram (as we have been doing); we shall think of these simply as regular projections
onto the plane R × {0} × [0, 1] ⊂ R2 × [0, 1]. Let T denote the set of all the tangle diagrams in
Figure 2, as well as all other tangle diagrams derived from those in Figure 2 by changing orientation
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on one or more of the strands. This set T is known as the set of elementary tangles. Then it is
well-known (and not difficult to show, see [10] or [26]) that all ribbon diagrams can be factored
into diagrams from T using the tensor product and composition operations that we have described.
What’s more, two such diagrams represent isotopic ribbons if and only if they are related by moves
from the following list:

Figure 3: Relations between tangle generators

This is essentially due to Reidemeister; find proofs in the previous references, and references
therein. Now, suppose we have a strict, rigid, monoidal category C, with a choice of object V ∈ C.
To every word w ∈ O we associate an object in C by replacing each + of w with V , each − with
V ∗, and taking their tensor product in the corresponding order; denote this element as FV (v) (to
∅ we associate the tensor identity object of C). Suppose we also assign, to each of the morphisms
R : v → w from T , a morphism FV (R) ∈ Hom(FV (v),FV (w)) of C. Then the above discussion
amounts to saying that this map FV extends to a unique functor FV : Rib→ C, respecting tensor
products, if and only if it sends each side of the relations from Figure 3 to the same morphism.
Thus the following theorem, whose proof is technical and not difficult, and can be found in [10],
justifies the statement that Rib is the free ribbon category:

Theorem 3.1. Let C be a strict ribbon category, fix an object V ∈ C, and let FV be as defined
above. Further, each element in T is a structure map in the obvious way, so define FV on T by
sending each map to the corresponding structure map in C, e.g. F(ev+) = evV ,F(σ+,+) = σV,V ,
etc. (and likewise for −). Then FV extends to a functor Rib→ C, i.e., the relations are satisfied.

Proof. It suffices to check the relations.

Remark 3.3. There is some ambiguity as to whether FV is meant to respect duals. A priori, it
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does not: this is because Rib is reflexive (double dual is the identity) but the image of FV may not
be; therefore we cannot expect that FV ((+)∗∗) = FV ((+))∗∗. Likewise, whereas c̃oev(w) = coev(w∗)
in Rib, this will not be true in general ribbon categories. Now, note that we have shown in §2
that there is a canonical isomorphism between V and V ∗∗ for all objects V in a ribbon category;
therefore, as in the case of non-strict categories, we can always pass to an equivalent category in
which V = V ∗∗. However, it is not not clear to the author how much structure is lost; this point is
not mentioned in the literature. In any case, we can do everything we need to in the image of FV

without its domain being reflexive; we just have to be a little more careful.
Taking the previous remark into consideration, we have, after possibly restricting to an equiv-

alent category, also called C,

Corollary 3.1. For any ribbon category C and any object V ∈ C, there is a unique functor FV :
Rib→ C, respecting tensor products, duals, braidings, and ribbons, such that FV (+) = V .

FV is the Reshetikhin-Turaev functor.
Intuitively, the above discussion amounts to stating that Rib is the smallest ribbon category,

consisting only of the minimal structure needed to make it ribbon. In fact, Corollary 3.1 allows us
to represent maps of a general ribbon category as modified tangle diagrams, and there are many
non-obvious relations in general ribbon categories that can be proven geometrically, with this point
view. Indeed, we can see the geometric properties of ribbons as motivating many of the obstructions
we went through in §2. For example, so that our duals would be tensorial, we had to define

ẽvV = evV ◦ (b−1
V ∗ ⊗ id) ◦ σV,V ∗ : V ⊗ V ∗ → I (14)

instead of the more näıve
ẽvV = evV ◦ σV,V ∗ : V ⊗ V ∗ → I

And indeed, in the following figure, we have drawn ẽv+ on the left, and (14) on the right (actually, we
have written ev+◦(id⊗b−1

− )◦σ+,−, which is equal to (14) in any ribbon category); this demonstrates
geometrically what is “wrong” with omitting the ribbon element (i.e., without a ribbon element,
the two sides of the equality in Figure 4 most certainly not be equal)

Figure 4:

Let C be a ribbon category with tensor identity object k. Then by Remark 3.1 and Corollary
3.1, for every object V ∈ C we get an invariant of framed links taking values in End(k), simply by
taking the image of any link under FV . However, it is obvious that if the braiding of V in C satisfies
σ2

V,V = idV,V , then this invariant does not distinguish any links. Therefore, we cannot apply the
machinery from §2 to get link invariants unless we can find some non-trivial ribbon Hopf algebras.
This we do in the next section. For now, we write down some values of FV in Figure 5.
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Figure 5:
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4 Quantum Groups

In this section, we construct a non-trivial ribbon Hopf algebra, generalizing the construction of
U(g) in §2. We will be working over a ring instead of a field, but the generalization from §2 is
immediate. References for this material include [10, 2, 4]. In particular, all unproved material can
be found in [10].

4.1 Topological C[[h]]-Modules

Let C[[h]] denote the ring of formal power series in h, with coefficients in C. We are interested in
modules over C[[h]]. In particular, if V is a vector space over C, then the set

V [[h]] =

{ ∞∑

n=0

vnhn : vn ∈ V

}

of formal power series in h with coefficients from V is a C[[h]]-module in the obvious way, which
we might call the “module quantization” of V . The action of C[[h]] on the quotient V [[h]]/hV [[h]]
naturally restricts to a C-action, and it is easy to deduce that

V [[h]]/hV [[v]] ∼= V

as vector spaces. We think of this as setting h = 0 to get the “classical limit:” given a ∈ V [[h]],
we write “a mod h” for its image in the quotient. Likewise, given two vector spaces V,W and a
C[[h]]-linear map ρ : V [[h]] → W [[h]], we obtain a C-linear map “ρ mod h” from V → W . More
generally, for any C[[h]]-module M , we define the classical limit M/hM , which a priori only has
the structure of a C[[h]]-module.

Returning to the module quantization V [[h]], we can also take structure in the other direction,
as follows. Given a general C[[h]]-module M , any C[[h]]-linear map V [[h]] → M is determined (by
linearity) by its values on the constant power series, which form a copy of V (as an abelian group)
lying in V [[h]]. Therefore, any C-linear map ρ : V → W determines a unique map ρh : V [[h]] →
W [[h]], which acts as ρ on the constant power series in V [[h]]. Note that ρh ≡ ρ mod h, but of
course, for any given ρ, there will be many other C[[h]]-linear maps with this property.

Suppose that V actually has the structure (V, µ, η) of an (associative, unital) algebra over C;
we want to put a corresponding algebra structure on V [[h]]. By the previous discussion, we get a
C[[h]]-linear map µh : (V ⊗ V ) [[h]] → V [[h]]. However, in general,

(V ⊗ V ) [[h]] 0∼= V [[h]]⊗ V [[h]], (15)

and so µh does not give us a multiplication on V [[h]]. Now, suppose V = span{ei}∞i=1; then we can
think of (V ⊗ V )[[h]] as consisting of elements of the form

∞∑

n=0




mn∑

j=0

epjeqj



 hn,

where ei, ej are thought of as non-commuting variables. With this notation, we can embed V [[h]]⊗
V [[h]] into (V ⊗ V )[[h]] as the sub-module spanned by power series of the form

( ∞∑

n=0

epnhn

)
·
( ∞∑

n=0

eqnhn

)
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Then it is clear that every finite power series is contained in the image of V [[h]] ⊗ V [[h]], and
therefore we can “approximate” any power series in (V ⊗ V )[[h]]. Motivated by this example, we
solve the problem presented by (15) by putting a uniform topology on C[[h]]-modules in which
(V ⊗V )[[h]] is the completion of V [[h]]⊗V [[h]], and then we will define a new “topological” tensor
product, which is simply the old product followed by completion in this topology. The details of
this construction are not very important to what follows, so we will just give a brief overview.

Formally, we define the h-adic topology on a C[[h]]-module M by declaring that an open basis
of x ∈ M consists of the sets x + hnM . The completion lim←−nM/hnM of M in this topology is
denoted M̂ . In the special case M = V [[h]], we can define the h-adic topology as a norm topology,
and the completion is just the metric-completion. Indeed, let

f =
∞∑

n=0

vnhn, vn ∈ V

be an arbitrary element of V [[h]], and define w(f) ∈ N∪∞ as follows: if f 0= 0, w(f) is the smallest
natural number such that vw(f) 0= 0 but vk = 0 for all k < w(f); if f = 0, w(f) = ∞. Then we
define a norm on V [[h]] via |f | = 2−w(f) (it is not too hard to check that this is indeed a norm);
for obvious reasons, the ultrametric defined on V [[h]] by this norm is called the h-adic metric, and
the topology induced by this metric agrees with the previous definition of the h-adic topology on
V [[h]]. From this point of view it is obvious that an open base for zero consists of the ideals (hn).
This discussion will hopefully aid in visualizing the topology.

Define the topological tensor product ⊗̃ between C[[h]]-modules M and N to be the completion
of the standard module tensor product:

M⊗̃N = M̂ ⊗N

Then, by the definitions, we have

Theorem 4.1. V [[h]]⊗̃W [[h]] ∼= (V ⊗W )[[h]].

What is important to us is simply the fact that this tensor product has all the desirable prop-
erties, functoriality, associativity, etc, which the standard product enjoys, as long as we restrict
ourselves to maps which our continuous in the h-adic topology. For modules of the form V [[h]], it is
obvious that all linear maps are continuous. Using the topological tensor product, we can generalize
all of the algebra and coalgebra machinery from §2 to the case of modules over C[[h]]. (Technically,
we append this generalized machinery with the adjective “topological,” e.g. “topological algebra.”
We will usually neglect this formality, always assuming that C[[h]]-modules are tensored with the
topological tensor product). For example, using Theorem 4.1, it’s not difficult to show

Theorem 4.2. If (A, µ, η) is a unital, associative algebra, then so is (A[[h]], µh, ηh) with the topo-
logical tensor product. Furthermore, if we set µ̃ = µh mod h and η̃ = ηh mod h, then we have
A ∼= A[[h]]/hA[[h]] as algebras.

Indeed, any of the algebraic structure on A (algebra, coalgebra, Hopf algebra, braidings and
ribbons), can be lifted to A[[h]].

As a generalization of this “lifting” of algebraic structure, we have
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Definition 4.1 (Quantization). A quantization (sometimes called deformation) of a Hopf algebra
A over C is a (topological) Hopf algebra Ah over C[[h]] such that Ah

∼= A[[h]] as modules, and
Ah/hAh

∼= A as a Hopf algebra.

By the previous discussion, we know that there is a trivial way to turn A[[h]] into a quantization
of A. This is called the trivial quantization.

Before we move on to the construction of an explicit non-trivial quantization, a few more
straightforward definitions are in order. Suppose P = C 〈{Xi}〉 is the free algebra over C generated
by the set {Xi}; then the trivial quantization P [[h]] is the called the free topological algebra over
C[[h]] generated by {Xi}. Suppose we have a set of relations in P [[h]] among these generators; let
I be the two-sided ideal generated by these relations, and Ī its completion in the h-adic topology.
Then P [[h]]/Ī is called the topological algebra presented by these generators and relations.

Suppose we have a C[[h]]-algebra V [[h]]. Then given v ∈ V , we define

ehv =
∞∑

n=0

vnhn

n!

Likewise, we define sinhhv, cosh hv, etc. Note that ehv is obviously invertible, because its inverse
is e−hv.

Lastly, note that the units in C[[h]] are precisely the power series with non-zero constant term.
Therefore, given two non-zero power series f, g ∈ C[[h]] whose first non-zero coefficients have the
same index, we may naturally define elements f/g and g/f by first “dividing out” and “canceling”
h’s. We will do this implicitly throughout.

4.2 The Quantized Universal Enveloping Algebra of sl2

We are still hunting for non-trivial ribbon Hopf algebras. Unfortunately, it is obvious that the
trivial quantization of U(sl2) is still cocommutative (we have just restricted to g = sl2, and will
continue to do so for the rest of this paper. But it is part of the richness of the subject that similar
considerations work in general, at least for all semi-simple finite-dimensional Lie algebras over C).
In this section, we discuss a non-trivial quantization of U(sl2).

Definition 4.2. Uh(sl2) is the C[[h]]-algebra with generators {E,F, H} and relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] =
ehH − e−hH

eh − e−h
=

sinh(hH)
sinh(h)

Remark 4.1. In the literature, our h is often replaced by h/2.

Theorem 4.3. Uh(sl2) has a Hopf algebra structure given on its generators by

∆(H) = H ⊗ 1 + 1⊗H, ∆(E) = E ⊗ ehH + 1⊗ E, ∆(F ) = F ⊗ 1 + e−hH ⊗ F

ε(H) = ε(E) = ε(F ) = 0

S(H) = −H, S(E) = −ehHE, S(F ) = −e−hHF
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Sketch of Proof. Let I ⊂ P [[h]] be the Hopf ideal generated by the relations in Definition 4.2, and
let Ī denote its closure in the h-adic topology. To show, for example, that ∆ extends to an algebra
homomorphism Uh(sl2) → Uh(sl2) ⊗ Uh(sl2), we need to show that ∆(I) ⊂ P [[h] ⊗ I + I ⊗ P [[h]]
on the (algebra) basis of P [[h]]; it would then follow that ∆(Ī) ⊂ P [[h] ⊗ Ī + Ī ⊗ P [[h]] by the
C[[h]]-linearity of ∆. The former statement follows from a straightforward computation. Checking
similar statements for ε and S is not difficult; furthermore, it is easy to check that the Hopf algebra
relations are satisfied.

Theorem 4.4. Uh(sl2) is a quantization of U(sl2). It is known as the Quantized Universal En-
veloping Algebra of sl2.

It is easy to check from the definitions that Uh(sl2)/hUh(sl2) ∼= U(sl2) as a Hopf algebra. It
remains to show that Uh(sl2) ∼= U(sl2)[[h]] as C[[h]]-modules. In fact, we show that the entire
algebra structure is preserved:

Theorem 4.5. Uh(sl2) ∼= U(sl2)[[h]] as algebras over C[[h]].

On the other hand, the coalgebra structure is deformed; in particular, it is obvious that Uh(sl2)
is not cocommutative.

During the proof, we will distinguish elements of U(sl2) from their counterparts in Uh(sl2) by
denoting the classical elements with bars. Following [2], we will prove Theorem 4.5 by constructing
an explicit algebra isomorphism ϕ : Uh(sl2) ∼= U(sl2)[[h]]. To do this, we make use of a quantum
analogue of the Casimir element

Ω̄ =
1
4
(H̄ + 1)2 + F̄ Ē =

1
4
(H̄ − 1)2 + ĒF̄ ,

which generates the center of U(sl2). This element will also be important for the ribbon structure
on Uh(sl2).

Definition 4.3. The quantum Casimir element of Uh(sl2) is

Ω =

(
sinh 1

2h(H + 1)
sinhh

)2

+ FE =

(
sinh 1

2h(H − 1)
sinhh

)2

+ EF

It is easy to check that the two expressions above are indeed equal, and also that Ω̄ ≡ Ω mod h.

Proof of Theorem 4.5. We define ϕ : Uh(sl2) → U(sl2)[[h]] on the generators of Uh(sl2) as follows:

ϕ(H) = H̄, ϕ(F ) = F̄

ϕ(E) = 2

(
cosh h(H̄ − 1)− cosh 2h

√
Ω̄

((H̄ − 1)2 − 4Ω̄) sinh2 h

)
Ē

To see that the above quotient is well-defined, note that, for indeterminates u, v, the expression
cosh u−cosh v

u2−v2 can be written as a formal power series f(u2, v2). We can also see that ϕ ≡ id mod h.
To show that ϕ extends from the basis to a homomorphism of algebras, the only non-trivial

identity to check is

ϕ(E)F̄ − F̄ϕ(E) =
sinhhH̄

sinhh
(16)

22



(we have already substituted ϕ(H) = H̄ and ϕ(F ) = F̄ ).
Substitute the definition of Ω̄ into the quotient to get

ϕ(E)F̄ = −
(

cosh h(H̄ − 1)− cosh 2h
√

Ω̄
2 sinh2 h

)

Furthermore, because F̄ (H̄ − 1) = (H̄ + 1)F̄ , and because Ω̄ is in the center of U(sl2), we have

F̄ f
(
(h2(H̄ − 1)2, 4h2Ω̄

)
= f

(
h2(H̄ + 1)2, 4h2Ω̄

)
F̄

(f is the formal power series just defined), so that

F̄ϕ(E) = −
(

cosh h(H̄ + 1)− cosh 2h
√

Ω̄
2 sinh2 h

)

Subtracting gives (16).
To prove that ϕ is an isomorphism, we construct its inverse. First, reusing some of the previous

computation, it is easy to derive

ϕ(Ω) =
sinh2 h

√
Ω̄

sinh2 h

Letting

g(h, u) =
sinh2 h

√
u

sinh2 h
∈ C[[u, h]],

it is not hard to show

Lemma 4.1. There exists g̃ ∈ C[[h, u]] such that

g(h, g̃(h, u)) = g̃(h, g(h, u)) = u

Now define ψ(H̄) = H, ψ(F̄ ) = F, and

ψ(Ē) =
1
2

(
((H − 1)2 − 4g̃(h, Ω)) sinh2 h

cosh h(H − 1)− cosh 2h
√

g̃(h, Ω)

)
E

It is not hard to compute ψ(ϕ(E)) = E, ϕ(ψ(Ē)) = Ē, so we will be finished once we show that ψ
extends to an algebra homomorphism. Again, we just compute

ψ(Ē)F − Fψ(Ē)

=
1
2

(
((H − 1)2 − 4g̃(h, Ω)) sinh2 h

cosh h(H − 1)− cosh 2h
√

g̃(h, Ω)

)
EF

− 1
2

(
((H + 1)2 − 4g̃(h, Ω)) sinh2 h

cosh h(H + 1)− cosh 2h
√

g̃(h, Ω)

)
FE
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where we have used [H,F ] = −2E to bring the F to the right side in the second term above. Using
the definition of Ω, we then rewrite the above as

1
2

(
((H − 1)2 − 4g̃(h, Ω)) sinh2 h

cosh h(H − 1)− cosh 2h
√

g̃(h, Ω)

) (
Ω−

sinh2 1
2h(H − 1)

sinh2 h

)

− 1
2

(
((H + 1)2 − 4g̃(h, Ω)) sinh2 h

cosh h(H + 1)− cosh 2h
√

g̃(h, Ω)

) (
Ω−

sinh2 1
2h(H + 1)

sinh2 h

)

Now, we simply transform the above denominator as follows:

cosh h(H − 1) − cosh 2h
√

g̃(h, Ω)

= 2
(

sinh2 1
2
h(H − 1)− sinh2 h

√
g̃(h, Ω)

)

= 2
(

sinh2 1
2
h(H − 1)− Ω sinh2 h

)

Therefore

ψ(Ē)F − Fψ(Ē)

=
1
4
((H + 1)2 − 4g̃(h, Ω))− 1

4
((H − 1)2 − 4g̃(h, Ω))

= H

Remark 4.2. Using ϕ, one can show that Ω is a “topological” generator for the center of Uh(sl2)
(i.e., it generates a dense subset of the center).

To derive knot invariants from Uh(sl2), we will need to know something about its representations
(and that it is a ribbon algebra, of course, which we’ll see shortly). In fact, Theorem 4.5 tells us
almost everything: we can derive the representation theory of Uh(sl2) directly from that of sl2, as
we see now.

First, define Repfin
A , in the case of a topological algebra A, to be the category of representations

which are free and finite rank as C[[h]]-modules. Now, suppose A is a quantization, i.e., there exists
an algebra K over C such that A ∼= K[[h]] as algebras. Then a representation V ∈ Repfin

A produces
a representation V/hV ∈ Repfin

K . Likewise, given an object V ∈ Repfin
K , we know how to produce

an object V [[h]] ∈ Repfin
A . In the case that A = Uh(sl2), it is known that these operations are

mutually inverse, because the finite-dimensional representations of sl2 admit no non-trivial defor-
mations (see [13, 10, 2]). Finally, irreducible representations of K correspond to “indecomposable”
representations of A, where an indecomposable representation V [[h]] of A, for V ∈ Repfin

K , is one
which cannot be written as the sum of representations of the form W [[h]], U [[h]] for W, U ∈ Repfin

K

(in the stricter sense, any representation V ∈ Repfin
A has a proper subrepresentation hV ). Return-

ing to Uh(sl2), these indecomposable representations actually have quite a beautiful form, which
the reader can compute directly from the well-known representation theory of U(sl2), now that
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we’ve produced an isomorphism ϕ : Uh(sl2) → U(sl2)[[h]]; we will just write them down without
deriving them. First, we need to define the quantum integer

[n] =
qn − q−n

q − q−1

Then we can also define the quantum factorial

[n]! = [n] · [n− 1] · · · [2] · [1],
[n]!

[n−m]!
= [n] · [n− 1] · · · [n−m + 1]

which will come up later. For the rest of this chapter, set q = eh. Then it is easy to check that [n]
is a well-defined element of C[[h]], and that [n] ≡ n mod h; likewise for the quantum factorial (we
may sometimes write [n]q instead of [n]; it is the same thing). Then we have

Theorem 4.6. Just as for U(sl2), the finite dimensional, indecomposable representation for Uh(sl2)
are indexed by the positive integers. Explicitly, on generators, the nth representation Vn, into the
free module of rank n + 1 over C[[h]] with basis {v0, . . . , vn}, takes the values

H.vr = (n− 2r)vr (17)
E.vr = [n− r + 1]vr−1 (18)

F.vr = [r + 1]vr+1 (19)

Remark 4.3. If we use new generators X = Ee−hH/2 and Y = ehH/2F , we can rewrite the above
representations in matrix form as

ρn(X) =





0 [n]q 0 . . . 0
0 0 [n− 1]q . . . 0
...

... . . . . . . ...
0 0 . . . 0 1
0 0 . . . 0 0




ρn(Y ) =





0 0 . . . 0 0
1 0 . . . 0 0

0 [2]q
. . . ...

...
...

... . . . 0 0
0 0 . . . [n]q 0





ρn(H) =





n 0 . . . 0 0
0 n− 2 . . . 0 0
...

... . . . ...
...

0 0 . . . −n + 2 0
0 0 . . . 0 −n





which is the form that appears most often in the literature. Indeed, for the rest of this paper, we will
use the notation ρn : Uh(sl2) → Vn to denote the indecomposable, n+1-dimensional representation
of Uh(sl2), and we will continue to fix a preferred basis {v0, · · · , vn} of Vn.

It is quite straightforward to check that the above maps really do define representations of
Uh(sl2), and also to compute that Vn/hVn is the n + 1-dimensional irreducible representation of
U(sl2).

We now produce a universal R-matrix and ribbon element for Uh(sl2), turning it into a ribbon
Hopf algebra. Historically, the existence of a universal R-matrix was one of the most exciting
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features of Uh(sl2), for topologists, and for those interested in statistical mechanics and quantum
integrable systems. In fact, Drinfel’d proved that there is a universal R-matrix not only for Uh(sl2),
but for many other Quantized Universal Enveloping Algebras as well. To do so, he made use of
a novel construction called the quantum double: he showed, in quite a general setting, that if two
Hopf algebras A, B are dual in an appropriate sense, say for example, that we have a pairing ei +→ ei

between their bases with certain properties, then one can create a new Hopf algebra, essentially of
the form D = A ⊗ Bop. He then showed that the unique element

∑
ei ⊗ ei ∈ D was a universal

R-matrix for D.
In fact, for Uh(sl2), the roles of A and B are essentially played by Uh(b+) and Uh(b−), the

quantizations of the positive and negative Borel subalgebras of sl2. However, the situation turns
out to be slightly tricky; the full story is given in the references mentioned at the beginning of the
section. Nevertheless, using the general form of the R-matrix suggested by Drinfeld’s formalism, it
is not so hard to compute the coefficients which ensure that Uh(sl2) is quasitriangular; this is done
in [12]. Here, we simply produce the fabled universal R-matrix:

Theorem 4.7. Uh(sl2) is topologically quasi-triangular, with universal R-matrix

R =
∞∑

n=0

q
1
2n(n−1)(q − q−1)n

[n]!
e

1
2h(H⊗H) (E)n ⊗ (Fn) (20)

Recall that, according to §2, τ ◦ ρn(R) defines a Uh(sl2)-linear map Vn⊗Vn → Vn⊗Vn. Denote
this map by Řn, and let (Řn)ij

kl be the vk ⊗ vl-coordinate of Řn(vi ⊗ vj). From Theorem 4.7, it is
not difficult to compute (see [12]):

Theorem 4.8.

(Řn)ij
kl =

min(n−1−i,j)∑

n=0

δl,i+nδk,j−n
(q − q−1)n

[n]!
[i + n]!

[i]!
[n− 1 + n− j]!

[n− 1− j]!

×q2(i−(n−1)/2)(j−(n−1))/2−n(i−j)−n(n+1)/2

Now, let u = m ((S ⊗ id)(τ(R))) = S(r(2))r(1) (with R =
∑

r(1) ⊗ r(2)), as in (9), so that
S2(a) = uau−1 (see (12)) for all a ∈ Uh(sl2). It is quite an easy computation on the generators
of Uh(sl2) to check directly that S2(a) = ehHae−hH as well. Therefore ν = e−hHu = ue−hH is in
the center of Uh(sl2); because ehH satisfies ∆(ehH) = ehH ⊗ ehH , we conclude that ν is a ribbon
element of Uh(sl2). Furthermore, Drinfeld has shown the following nice realization of ν (see [3]):

Theorem 4.9. ν = e
hΩ
2 .

Furthermore, we have κ = ν−1u = ehH , so that

ρn(κ) =





qn 0 . . . 0 0
0 qn−2 . . . 0 0
...

... . . . ...
...

0 0 . . . q−n+2 0
0 0 . . . 0 q−n




(21)
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Likewise, by computing ρn(Ω), and using Theorem 4.9, we have

ρn(ν−1) = q−
(n+1)2−1

2





1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1




(22)

Indeed, because ν is central and Vn indecomposable, it can be deduced a priori that ρn(ν) gives a
scalar operator. (In fact, ρn(Ω) gives the same operator as the classical Casimir element).

We now proceed to discuss the topological invariants derived from Uh(sl2).

5 Quantum Knot Invariants

5.1 The Jones Polynomial

As mentioned, because Vn is indecomposable and the ribbon element ν−1 is central, its image in
End(Vn) is a scalar operator; let αn denote this scalar. We first show that this allows us to get an
unframed invariant from FVn .

Let T be an oriented tangle, not ribbon, i.e. an unframed tangle. Given any diagram D of T ,
there is an obvious framing, called the blackboard framing, where the ribbon is simply taken to be
flush against the plane of projection, which turns D into a ribbon b(D). We also let w(D) denote
the writhe of D, which is defined to be the sum of the signs of the crossings of D, see Figures 6 or
7.

Theorem 5.1. Fn(T ) := α−w(D)
n FVn(b(D)) is an invariant of oriented tangles.

Proof. We know that FVn is invariant under Reidemeister moves 2 and 3, so we need to check move
1. Applying move 1 to D and then taking b(D) is the equivalent of adding or removing a twist,
which, by the construction in §3, is the equivalent of composing FVn(b(D)) with ρn(ν−1) or its
inverse, that is, multiplying by α±1

n . It is easy to check that, under such a move, the writhe of D
changes by ±1 as well.

Definition 5.1. Fn(R) is called the unframed colored Jones polynomial with color n.

Therefore, for an oriented (n, m)-tangle R, Fn(R) is a linear operator from ⊗n
i=1V

εi → ⊗m
j=1V

εj ,
where ε = ±1 and V 1 = V, V −1 = V ∗. When n = m = 0, so that R is an oriented link, we have
Fn(R) ∈ End(C[[h]]), so by evaluating at 1, we get an element of C[[h]] which we will still refer to
as Fn(R). As we have seen, when we write the structure maps of Repfin

Uh(sl2) as matrices in our
fixed basis, their entries live in C(q), so we conclude that Fn(R) ∈ C(q) as well, when R is a link.

Given that most people are introduced to the Jones polynomial, and its immense importance,
via a “skein theoretic” definition in terms of knot diagrams, the next result should seem rather
stupendous:

Theorem 5.2. When L is a link, F1(L) gives the Jones polynomial.
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Figure 6:

Proof. It is well known (the argument is completely combinatorial) that the Jones polynomial is
characterized by its value on the unknot, usually taken to be q + q−1 or 1, and by the skein relation

q2J(L+) + q−2J(L−) = (q − q−1)J(L0) (23)

Using Theorem 4.6 and 4.7 or 4.8, we compute

Ř1 = τ ◦ ρ1(R) =





q1/2 0 0 0
0 q1/2 − q−3/2 q−1/2 0
0 q−1/2 0 0
0 0 0 q1/2





Comparing with §3, we see that this is FV1(L+); we also see that L− is sent to its inverse, which is

Ř−1
1 =





q−1/2 0 0 0
0 0 q1/2 0
0 q1/2 q−1/2 − q3/2 0
0 0 0 q−1/2





Subtracting, we get
q1/2L+ − q−1/2L− = (q − q−1)Id

Now, by (22), α1 = q−3/2; therefore, because w(L+) = w(L0) + 1, w(L−) = w(L0) − 1, we derive
(23). Finally, we compute (by O we mean the unknot)

F1(O) = qdim(V1) = tr(ρ1(κ)) = [2] = q + q−1 (24)

by (21) and the results of §3, agreeing with a common normalization of the Jones polynomial.

What’s more, it is easy to generalize the computation in (24), giving us

Fn(O) = qdim(Vn) = tr(ρn(κ)) = [n + 1],

nicely generalizing the classical dimension.

Remark 5.1. It can be shown, essentially because the representations of Uh(sl2) are self-dual, that
the colored Jones polynomial is essentially independent of orientation.
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Figure 7: Signs for vertices

5.2 State-Sum Models

Now, suppose L is an oriented link, and let D ⊂ R2 be a diagram for L. Thinking of (1, 0) as
a directed vector on the x axis in R2, let X denote the set of points of D whose tangent vectors
are parallel to (1, 0), and Ẋ ⊂ X those points of X whose tangent vectors also point in the same
direction as (1, 0). Let N denote the crossings of D. Consider D as a graph with vertices X ∪N ,
and let E denote the set of edges of D. Define signs of the vertices as in Figure 7.

Let Ψ be the set of functions σ : E → {1, . . . , n + 1}, called states. According to Figure 7, if
σ ∈ Ψ and ν ∈ N , define

〈D|σ〉ν =

{
(Řn)σ(eν)σ(fν)

σ(gν)σ(hν) if sgn(ν) = 1

(Ř−1
n )σ(fν)σ(eν)

σ(hν)σ(gν) if sgn(ν) = −1
(25)

Lastly, let µi
j be i, j entry of the n + 1× n + 1 matrix ρn(κ), in our preferred basis. Then we have

Theorem 5.3.

Fn(L) = α−w(L)
n

∑

σ∈Ψ




∏

ν∈N
〈D|σ〉ν

∏

ξ∈Ẋ

(µσ(xξ)
σ(yξ))

−ε(ξ)
∏

ξ∈X−Ẋ

δσ(xξ),σ(yξ)



 (26)

Proof. See figure 8 to recall how FVn acts on the elementary tangles (with the blackboard framing).
If, after dividing D into elementary tangles, only those in Figure 8 appear, then the theorem is

obvious; it follows from a straight-forward linear algebra computation. One would hope that, in the
more general case, the situation would be similar; however, things are surprisingly subtle. In [24,
p. 540], Turaev, after arguing in a special case as above, simply shows that the general expression
in (26) is invariant under Reidemeister moves. We refer the reader to his paper for the proof.

Remark 5.2. Given that ρn(κ) is a diagonal matrix, (26) can be written in the more symmetric
form

Fn(L) = α−w(L)
n

∑

σ∈Ψ




∏

ν∈N
〈D|σ〉ν

∏

ξ∈Ẋ

µ−ε(ξ)
σ(yξ)δσ(xξ),σ(yξ)

∏

ξ∈X−Ẋ

δσ(xξ),σ(yξ)



 (27)

where µi is the ith entry along the diagonal of ρn(κ).
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Figure 8: Elementary tangles

To derive some geometric meaning from Fn(L), it turns out we will need to specialize the
variable q to particular values of C. Note that this cannot be done a priori, while still in Uh(sl2);
many power series in h would not converge. However, when L is a link, as we have seen, Fn(L) is
at least a rational function in q, and we can specialize.

For the rest of this paper, we set q = e2πi/(n+1). Immediately, this specialization appears to be
a little worrisome: for example, we have Fn(O) = [n + 1] = 0. Indeed, Fn(L) = 0 for all links at
this value of q. To see why this might be so, note that to any link L and choice of point on L,
we can associate a (1,1)-tangle simply by breaking L at that point. Denote such a tangle by L′

(conversely, given a (1,1)-tangle L′, we can close it to get a link, uniquely determined by L′, called
L). The invariant Fn(L′) is an operator from Vn → Vn or V ∗

n → V ∗
n ; because Vn is indecomposable,

it’s not hard to show that this operator is a scalar operator, see [12, p. 499]. Let Fn(L′) denote
this scalar. By the calculations in Figure 5, we have

Fn(L) = qtr(Fn(L′))
= tr

(
ρN (κ ◦ ν−1) ◦

(
Fn(L′) · IdVN

))

= Fn(L′)tr(ρ(κ ◦ ν−1))
= Fn(L′) · qdim(VN )

Thus we define
F ′

n(L) = Fn(L′) =
Fn(L)
[n + 1]

(of course, formally, the last expression is not well-defined when q = e2πi/(n+1); we simply use the
the middle expression (or we can think of ourselves as dividing before specializing)). Note that this
is the invariant to be used in the Volume Conjecture.

Suppose we have a diagram D of an oriented (1,1)-tangle L′; D corresponds to a link diagram
with two distinguished edges, adjacent to the broken point. Consider D as a graph as before, and
let Ψ̇A be the set of states which take some fixed A ∈ {1, . . . , n + 1} on these two distinguished
edges. Then a simple matrix computation generalizes Theorem 5.3 to the case of (1,1)-tangles:

Theorem 5.4. F ′
n(L) = α−w(L)

n
∑

σ∈Ψ̇A

(∏
ν∈N 〈D|σ〉ν

∏
ξ∈Ẋ (µσ(xψ)

σ(yψ))
−ε(ξ) ∏

ξ∈X−Ẋ δσ(xξ),σ(yξ)

)

(Precisely, the choice of A corresponds to which diagonal entry of the scalar operator F ′
N (L′) we

are choosing; of course, they are all the same. Without loss of generality, one usually takes A = 0,
and we write Ψ̇ = Ψ̇0).
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5.3 Kashaev’s Invariant

In a series of papers [8, 9, 7], Kashaev derived a link invariant from quantum groups in a fashion
similar to the one we have just gone through, though he was motivated by a quantum analogue of a
complex function called the dilogarithm, which we will define in §6. He also introduce a state-sum
model for his invariant. Later, in [17], Murakami and Murakami showed that, at q = e2πi/(n+1),
one could apply some linear algebra manipulations to deduce that Kashaev’s invariant agrees with
F ′

n(L). We will need this form of the invariant in §7, so we write it down now, though we will recall
it then as well.

Note that, to attempt to agree with the literature, we will have to make a somewhat radical
change in notation. First, we now let N = n + 1; thus N is the dimension of the representation of
Uh(sl2) which is lurking in the background. For m ∈ Z, let [m] ∈ {1, . . . N} be the residue of m.
Let (w)[m] = (1− w)(1− w2) . . . (1− w[m]), and define the symbol

θij
kl =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,
0 otherwise.

and, for convenience, let q̄ = q−1. Define the N2 ×N2 matrix S such that

(S)ij
kl = Nq−1/2−(k−j)(i−l+1) θij

kl

(q̄)i−j(q)j−l(q̄)l−k−1(q̄)k−i

Remark 5.3. Note that θ = 1 if and only if qi, qj , ql, qk go around the unit circle clockwise, and
l 0= k.

Theorem 5.5 (Kashaev’s version of the colored Jones polynomial). Replacing Ř by S in the notation
from Theorem 5.3, we have

FN−1(L′) =
∏

ξ∈X
−qsgn(ξ)/2 ·

∑

σ∈Ψ̇




∏

ν∈N
〈D|σ〉ν

∏

ξ∈X
δσ(xξ)+1,σ(yξ)





Proof. See [17]. The proof consists of some complicated matrix manipulations (note that we use
the notation from [29]).

6 Hyperbolic Geometry

We have now given a rapid overview of one route to the so-called quantum knot invariants. In this
section, we make a sudden change in direction, and describe the geometry of hyperbolic 3-space.
In the next and final section, we will show how the two are related. Some good references for this
material are [1, 20, 16, 23].

6.1 Preliminaries

We use the symbol H3 to denote hyperbolic 3-space as an abstract Riemannian 3-manifold, up
to isometric diffeomorphism (isometry, for short). For our purposes, it will be useful to have two
different concretely-realized models of H3. We can use either one to define H3, and then derive the
other via an isometry; we choose to begin with the Poincaré ball model.
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Definition 6.1. The Poincaré ball B3 is the open unit ball B3 ⊂ R3 with Riemannian metric

ds2
x =

4|dx|2

(1− |x|2)2

at each point x ∈ B3.

Definition 6.2. H3 is the isometry class of B3.

Of course, B3 is not isometric to the unit ball with the metric induced from R3 (though the
two are diffeomorphic via the identity map). However, because ds2

x is just a positive multiple of
the induced metric, B3 is “conformally correct,” that is, the standard Euclidean measure of angle
agrees with the hyperbolic angle. On the other hand, distances are warped in the ball model—
in particular, there are hyperbolic geodesics which are not Euclidean lines. To see this, we first
describe the (orientation-preserving) isometries of B3.

Consider the 3-sphere S3 as R3 union a point at infinity, and define a Euclidean similarity S of
S3 to be a map of the form

S(p) = λA(p) + b, S(∞) = ∞

with λ > 0, A ∈ O(3), p, b ∈ R3. Define the fundamental reflection J : S3 → S3 to be the map

J(p) =
p

|p|2 , J(0) = ∞, J(∞) = 0

with p ∈ R3. Then we have

Definition 6.3. A Möbius transformation of S3 is an orientation-preserving diffeomorphism S3 → S3

obtained as the composition of a finite number of Euclidean similarities and fundamental reflections.

Möbius transformations of S3 have much in common with their better-known relatives acting
on S2: they are conformal at points not sent to ∞, preserving Euclidean angles, and they send
circles and lines to circles and lines.

For any subset E ⊂ S3, we denote by Möb(E) the group of Möbius transformations sending E
to itself. Then the following important theorem is standard (we implicitly restrict Möb(B3) from
S3 to B3):

Theorem 6.1. Möb(B3) = Isom+(B3)

See[16] for details.
Note that each element of Möb(B3) restricts to a Möbius transformation of S2, and that this

restriction determines the original element of Möb(B3) uniquely. Furthermore, every Möbius trans-
formation of S2 can be obtained in this way, and therefore we obtain an isomorphism Isom+(B3) =
Möb(B3) ∼= PSL2(C). The element of Isom+(B3) associated to an element γ ∈ PSL2(C) by this
isomorphism is sometimes called the Poincaré extension of γ.

Remark 6.1. So far, S2 = ∂B3 is only defined in terms of the special properties of the ball model.
However, we will soon give an intrinsic definition of ∂H3 in terms of the geometry of H3.
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Returning now to the geodesics of B3, one first computes directly that the distance-minimizing
path from the origin to any point q ∈ B3 is given by a Euclidean line. In other words, for any path
C joining 0 and q, one verifies the inequality

∫

C

|dp|
1− |p|2 ≥

∫ |q|

0

dx

1− x2
,

and checks that equality holds when C is the Euclidean line joining 0 to q. From this it follows
that the Euclidean diameters of B3 are geodesics. One then checks, from the circle-mapping and
conformal properties of Möb(B3), that the orbits under Isom+(B3) of these diameters consist
precisely of the intersections B3 ∩S, where S is a circle in R3 which is perpendicular to ∂B3. Thus
we have determined the geodesics of B3. Furthermore, we define a hyperbolic arc to be a closed
connected subset of a hyperbolic geodesic (they play the role of line segments), and we define a
hyperbolic plane to be a closed subspace of H ⊂ H3 such that the geodesic between any two points
of H is contained in H. One can then check that the hyperbolic planes of B3 are intersections
B ∩ B3, where B ⊂ R3 are spheres orthogonal to ∂B3, or else planes through the origin (i.e.
spheres through infinity).

Integrating along diameters of B3, one sees that all geodesics are infinitely long, and therefore
that B3 is complete. In particular, S2 = ∂B3 is “infinitely far away” from any point in B3. Indeed,
this so-called sphere at infinity of H3 has the following natural, intrinsic definition. Denote by S
the set of all geodesic rays in H3 parameterized by arc-length on [0,∞), and define two elements
of S to be equivalent if they do not diverge as their lengths go to infinity, in other words, define an
equivalence relation R on S such that

γ1Rγ2 ⇐⇒ sup
t≥0

d(γ1(t), γ2(t)) < ∞

for γ1, γ2 ∈ S. Define ∂H3 = S/R, H3 = H3 ∪ ∂H3 (as sets). We define a topology on H3 so that
H3 is open and inherits its own topology, and a basis of neighborhoods around X ∈ ∂H3 is defined
as follows: choose γ in the class of X, let x ∈ B3 be its starting point, let V be a neighborhood of
γ̇(0) in the unit sphere of TxH3, and let r > 0. Then set

U(γ, V, r) = {α(t) : α ∈ S, α(0) = x, α̇(0) ∈ V, t > r}
⋃

{〈α〉R : α ∈ S, α(0) = x, α̇(0) ∈ V } ,

where 〈α〉R indicates the class of α in S/R. Our basis comes from varying γ, V, and r. Considering
the Poincaré ball model, we see that ∂H3 is canonically identified with S2 = ∂B3. Indeed, by
construction, every geodesic γ corresponds to two points in ∂H3 (in B3, these are the points where
γ intersects ∂B3); these are called the ends of γ. Conversely, given p, q ∈ ∂H3 with p 0= q, there is
one and only one geodesic in H3 whose ends are p and q. Finally, note that Isom+(H3) permutes
the geodesics of H3 and therefore extends to an action via Möbius transformations on ∂H3 in a
canonical way. Thus we establish an intrinsic isomorphism between Isom+(H3) and PSL2(C).

6.2 Ideal Tetrahedra

In this section we discuss the properties of certain hyperbolic tetrahedra, which will play a central
role when we begin to construct hyperbolic 3-manifolds.

Let ∆ denote the standard oriented 3-simplex, and suppose we have an (orientation preserving)
embedding i : ∆ ↪→ H3. We say that i(∆) is a hyperbolic tetrahedron if the image of each face of
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∆ is a subset of a hyperbolic plane (it follows that the edges of ∆ are sent to hyperbolic arcs).
Suppose now that the image of i is actually H3, but that only the 0-skeleton (the vertices) of ∆ are
allowed to land in ∂H3. We call each vertex of ∆ which is on the sphere at infinity an ideal vertex ;
if all three vertices are ideal, we say that ∆ is an ideal hyperbolic tetrahedron, or ideal tetrahedron
for short. These are the tetrahedra we’re interested in. In what follows, we will abuse notation and
alternatively consider ∆ as an abstract 3-simplex and as a subspace of H3.

To investigate the properties of ideal tetrahedra, it is convenient to pass to another model of
H3, the upper half-space model. Let e = (0, 0, 1) ∈ R3, and define T : S3 → S3 to be the Möbius
transformation such that

T (p) = e + 2J(J(p)− e).

T is a diffeomorphism from B3 ⊂ S3 to the upper-half space U3 = {(x1, x2, x3) ∈ R3 : x3 > 0}
(essentially, stereographic projection from ∂B3 to ∂U3). Our second model of H3 is defined to be
U3 with the metric pulled back under T ; this metric comes out to be ds2

x = |dx|2
|x3|2 , as one can check.

Definition 6.4. The Poincaré upper-half space U3 (upper-half space for short) is the open set
{(x1, x2, x3) ∈ R3 : x3 > 0} ⊂ R3 with the Riemannian metric

ds2
x =

|dx|2

|x3|2

at each point x ∈ B3.

In the upper-half space model, it is no longer the case that the entire boundary ∂H3 can be
represented within the natural ambient space, however, it is still quite easy to understand: it
consists of the plane ∂U3 union a point, which we call ∞ or “the point at infinity in the upper-half
space model,” and which, topologically, would be the point at infinity if we compactified R3 ⊃ U3

to S3. Indeed, geodesics in U3 fall into two categories: semi-circles perpendicular to ∂U3, having
both their ends on ∂U3, and Euclidean lines perpendicular to ∂U3, which have one end at ∞. (See
Figure 9 for a picture of an ideal hyperbolic tetrahdron in U3, showing all of these structures).
Just as in B3, the group Isom+(U3) acts on ∂H3 ∼= ∂U3 ∪ {∞} by Möbius transformation, and
therefore, for any X ∈ ∂H3, there is an orientation-preserving isometry of U3 whose extension to
the boundary sends X to ∞. This will help us visualize many things.

To investigate the properties of ideal tetrahedra, we will need the concept of a “sphere” around
a point on ∂H3, called a horosphere. To give the definition, note that the spheres around a point
X in Hn (or any n-dimensional geometry) can be defined as connected n− 1 manifolds orthogonal
to all geodesics through X. Likewise, given a point X ∈ ∂H3, we define a horosphere around X to
be a connected surface which is orthogonal to all geodesics with an end at X. In B3 a horosphere
centered at X is a Euclidean spheres contained in B3 except for the point X, where it is tangent.
The convex interior of a horosphere is called a horoball centered at X. Note that translation along,
e.g., the diameter of B3 ending at X permutes the horospheres (and horoballs) centered at X, and
therefore they are all congruent.

It is even easier to visualize horospheres in U3. Suppose we have some point X on ∂U3; we may
apply an isometry so that X +→ ∞. Then a horosphere at X is a plane parallel to ∂U3 (see Figure
9). From this picture, and the explicit form of the metric on U3, it follows immediately that there
is a canonical Euclidean structure on each horosphere.
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Figure 9: An ideal tetrahedron in U3, intersecting a horosphere about ∞ (i.e, a Euclidean plane),
to form its link L(∞), with dihedral angles α,β, γ

Remark 6.2. It is not at all obvious from looking at the standard horosphere in B3 that it has a
Euclidean structure; it appears to look like a sphere. One should think of the sphere’s positive
curvature as “canceling out” the negatively curved ambient hyperbolic space to arrive at a flat
surface.

We will use the notion of horosphere to help us classify (oriented congruency classes of) ideal
tetrahedra, proving that in fact, they have quite a simple moduli space. Specifically, let ∆ be an
ideal tetrahedron, and assume without loss of generality that one of its vertices, s, is at∞. Then we
can choose a sufficiently high horosphere H centered at s such that ∆ ∩H is a Euclidean triangle,
as in Figure 9. It is obvious that this triangle is well-defined up to Euclidean similarity; let L(s)
denote its similarity class, called the link of the vertex s.

We now note that the link L(s) of an ideal tetrahedron, for any vertex, determines T up to
congruence. To see this, suppose we have two ideal tetrahedra T, T ′ with vertices s, s′ such that
L(s) = L(s′). Use an isometry to move s to infinity; it follows, as in Figure 9, that the triangle
in ∂U3 formed by the three other vertices of T is in the similarity class L(s). The same thing can
be done for s′ and T ′. Then, note that given two similar triangles, in R2 ∪ {∞}, there is always
a Möbius transformation sending one to the other and fixing ∞. The Poincaré extension of this
Möbius transformation is an isometry of H3 sending the vertices of T to the vertices of T ′, and
therefore sending T to T ′, as desired.

Note that the angles α,β, γ of L(s) are precisely the so-called dihedral angles between adjacent
faces of T at the corresponding edges, and it follows that the sum of the dihedral angles around a
vertex of T is π. Denote the dihedral angles of all six edges of T by α,β, γ, α′, β′, γ′; we then have
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the equations
α + β + γ = α + β′ + γ′ = α′ + β + γ′ = α′ + β′ + γ = π

which reduces to the system

α + β = α′ + β′

α + γ = α′ + γ′

β + γ = β′ + γ′

which has the unique solution α = α′, β = β′, γ′ = γ. Therefore we actually conclude that the link
of T does not depend on the choice of vertex (and furthermore, that the dihedral angles of opposite
edges are equal).

We have established a bijection between congruence classes of ideal tetrahedra and similarity
classes of triangles in E2. We extend this to a bijection between oriented tetrahedra and oriented
triangles in the natural way, by giving the link of T the orientation induced from T . Now we
will classify oriented Euclidean triangles up to similarity. Simply choose a vertex v of L(s) (corre-
sponding to a choice of edge of T ), label the other two vertices of L(s) by u and t, so that v, t, u
go clockwise around the origin if T is negatively oriented, and counter-clockwise if T is positively
oriented; make the identification R2 = C, and define

z(v) =
t− v

u− v
∈ C.

(Geometrically, this is the same thing as applying the unique orientation preserving similarity
taking v to 0 and the v to either 1 or −1, depending on orientation). Note that im (z(v)) > 0 if T
is positively oriented, < 0 if it is negatively oriented, and = 0 if T is degenerate, meaning all four
of its vertices were on the boundary of some hyperbolic plane in ∂H3. See Figure 10.

Figure 10: z+(v) is for the positively oriented case, z−(v) the negatively oriented case.

The other vertices have invariants z(v)−1
z(v) , 1

1−z(v)

Remark 6.3. An ideal hyperbolic tetrahedron determines 4 points on S2, which have a cross-ratio
z, well defined up to z +→ (z − 1)/z +→ 1/(1 − z). This agrees with z(v) in the positively-oriented
case.
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Remark 6.4. There is a map from the set of (congruency classes of) oriented tetrahedra to itself,
corresponding to switching the orientation; the corresponding map on the moduli space C− {0, 1}
is just inversion.
Remark 6.5. It follows directly from our construction that arg(z(v)) is the dihedral angle at the
corresponding edge.
Remark 6.6. Depending on the situation, we will write the modulus z as a function of tetrahedra,
or as a function of edges, having fixed a particular tetrahedron. The context will make our usage
clear.

6.3 Volume of Ideal Hyperbolic Tetrahedra

Another great thing about ideal hyperbolic tetrahedra is that, though they are not compact, they
have finite volume. Indeed, define the Lobachevsky function Λ(θ), θ ∈ [−π, π], as

Λ(θ) = −
∫ θ

0
log |2 sinu|du

Then it is well known, for an ideal hyperbolic tetrahedron ∆ with dihedral angles α,β, and γ, that

Theorem 6.2. Vol(∆) = Λ(α) + Λ(β) + Λ(γ)

See any of the references at the beginning of the section for a discussion.
Furthermore, define the dilogarithm function,

Li2(z) =
∞∑

n=1

zn

n2
, for |z| ≤ 1

analytically continued as

Li2(z) = −
∫ z

0

log(1− w)
w

dw

Letting z be a modulus for ∆, we have

Theorem 6.3. Sign(Im(z)) · V ol(∆) = D(z) = arg(1− z) log |z|− im (Li2(z))

which we think of as the “algebraic volume” of ∆ (it’s positive if ∆ is oriented positively,
negative if ∆ is oriented negatively, 0 if ∆ is degenerate). D(z) is the so-called Bloch-Wigner
function.

6.4 Hyperbolic Manifolds

For some of the proofs we omit in this section, see [1, 23].
A hyperbolic 3-manifold is a smooth 3-manifold which is locally modeled on hyperbolic 3-

space. More generally, suppose we have a smooth manifold X and a group G acting on X by
diffeomorphism. Then an (X, G)-manifold is a smooth manifold made from patches of X which are
glued together by restrictions of G. Formally, we have

Definition 6.5 ((X, G)-manifold). A smooth manifold M is said to be endowed with an (X, G)-
structure if there is an open cover {Ui} of M and a set of smooth open maps {ϕi}, ϕi : Ui → X
such that
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1. ϕi : Ui → ϕi(Ui) is a diffeomorphism

2. If Ui ∩ Uj 0= ∅, then the restriction of ϕi ◦ ϕ−1
j : X → X to each connected component of

Ui ∩ Uj agrees with the restriction of an element of G.

M is called an (X, G)-manifold.

We will make use of two particular sorts of (X, G) manifolds. In both cases, X will be a
Riemannian manifold, with G acting on X either by isometries or similarities. In the former case,
M inherits its own Riemannian structure, and is called a geometric manifold. In the second, it is
called a similarity manifold. (This latter concept can seem a little unfamiliar. However, note that
we’ve already encountered an example: the fact that the link L(v) of an ideal tetrahedron has a
Euclidean structure, defined up to similarity, naturally gives it a (E,Simm(E)) structure). In both
of these cases, the action of G on X is rigid, meaning that each element g ∈ G is uniquely determined
by its action on any open subset of X. When G acts on X rigidly, we can construct a “developing”
map D : M̃ → X (M̃ is the universal cover of M) which naturally induces the (X, G)-structure
on M̃ , and therefore on M . This gives us a way to “develop,” or unravel, simply connected pieces
of M into X. This will often be helpful, as we usually have a much better understanding of the
geometry of X, than of the geometry of M .

Theorem 6.4. Let M be an (X,G)-manifold, and suppose the action of G on X is rigid. Then there
exists a map D : M̃ → X, which is an immersion inducing the (X, G) structure on M̃ (which is
itself induced by the structure on M).

To construct D, we start with any chart φ : U → X of the (X, G) structure on M . Next,
choose any path α ⊂ M ; it is not too hard to see, using the rigidity of the action of G, that we
can analytically continue φ along α. Thus, considering all paths in M , we obtain a map from the
universal cover of M into X. Starting with a different chart simply changes D by post-composition
with an element of G, indeed, D is unique up to composition with elements of G.

The monodromy of M is a map π1(M) → Deck(M̃), defined up to conjugation. Now, by
the uniqueness of D, we have T ◦ D = γ ◦ D for T ∈ Deck(M̃) and some unique γ ∈ G. The
correspondence T +→ γ actually defines homomorphism Deck(M̃) → G, and by first applying the
monodromy map, we get a map H : π1(M) → G called the holonomy of M , well-defined up to
conjugation.

The holonomy gives us some information about “sub-structures.” Indeed, suppose that the
(X, G) structure on M actually restricts to an (X, K) structure, where K ⊂ G is some subgroup
(so also acting rigidly). Then the construction of a holonomy for the (X, K)-structure gives a
holonomy for the (X, G) structure at the same time, so it follows that:

Theorem 6.5. Suppose K ⊂ G is a subgroup and M is an (X, G) manifold. Then the (X, G)
structure on M actually restricts to an (X, K) structure only if H(π1(M)) ⊂ K for some holonomy
H.

(Of course, if K is a normal subgroup, then “a holonomy” can be replaced by “all holonomies”).
The converse of Theorem 6.5 also holds, though we won’t need it.

What’s more, there is a special case in which the holonomy determines the entire (X, G) struc-
ture. If D is surjective, then it is a covering map, and M is said to be complete. If X is also
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simply connected, it follows immediately that D is in fact a homeomorphism, so M̃ ∼= X and
M = X/H(π1(M)), and we see that in this case, the holonomy determines the (X, G) structure
on M . Now, suppose M is a geometric manifold, so it has a metric induced from the Riemannian
manifold X. Then we have

Theorem 6.6. M is complete in the above sense if and only if it is complete as a metric space with
the induced metric.

For the proof, see [23].
We now rigorously define an (oriented) hyperbolic 3-manifold: a smooth 3-manifold M with a

(H3, Isom+(H3)) structure. Furthermore, as already mentioned, a Euclidean similarity surface is,
by definition, a surface M with a (E,Simm(E)) structure. By Theorem 6.6 and the proceeding
discussion, a hyperbolic 3-manifold is complete if and only if it is can be realized as H3/Γ, where
Γ ⊂ Isom+(H3) is a discrete subgroup of hyperbolic isometries, acting properly discontinuously on
H3.

Remark 6.7. Note that it is a famous property of 3 (and higher) dimensional complete hyperbolic
manfiolds that they are rigid ; this is called Mostow Rigidity. In other words, the hyperbolic
structure on such a manifold is actually a topological invariant of the underlying manifold. For
example, if the complement of a knot has a complete hyperbolic structure with finite volume, this
volume is an invariant of the knot.

6.5 Gluing Tetrahedra

Suppose we have a finite set {∆i} of oriented (topological) tetrahedra, and a pairing between their
faces which reverses orientation (and doesn’t send any face to itself). This pairing induces an
equivalence relation R on

∐
∆i such that (

∐
∆i) /R is a closed, oriented, triangulated 3-manifold

M̄ , except possibly in a neighborhood of each coset of vertices. Call each such coset a cusp of M̄ ;
for each cusp v ∈ M̄ , we can choose a regular neighborhood L(v), disjoint from all other cusps
of M̄ , such that L(v) − {v} is homeomorphic to V × (0,∞) for some closed orientable surface V .
Define the orientable, non-compact manifold M to be M̄ with its cusps removed. We still have
L(v) ⊂ M for each cusp; we continue to refer to v as a cusp of M (it is obvious that, fixing M , any
other triangulation of M̄ corresponding to M must also give the same set of cusps). We call L(v)
the link of the cusp v.

Remark 6.8. There is an intrinsic definition of cusp which applies to general 3-manifolds, but we
will not go down that route.

Note that the triangulation of M̄ gives a triangulation of M , except that it is now by topological
ideal tetrahedra, that is, 3-simplices with their vertices removed. Let T denote the data of this
triangulation, so that we write ∆ ∈ T to indicate that ∆ is one of the (now ideal) tetrahedra
used in triangulating M . In this section, the pair (M,T ) will indicate a 3-manifold M with such a
topological ideal triangulation T (non-empty, so that M is a priori non-compact).

Take such a pair (M, T ), and suppose that M = H3/Γ is actually a complete, finite-volume
hyperbolic manifold, so that, by the results of the previous section, we can choose a covering map
π : H3 → M . Our goal is to try to “straighten out” the ideal tetrahedra from T into a hyperbolic
ideal triangulation of M , still called T . More formally, we will try to put a hyperbolic structure on
each ∆ ∈ T , such that π−1(∆) is an isometry (for each choice of lift); when this can be done, it can
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be done uniquely. Then the hyperbolic ideal tetrahedra from T induce the hyperbolic structure of
M (note that this is not the same as saying that these hyperbolic tetrahedra can be glued up to
give a manifold isometric to M , as we shall see). What’s more, we’ve already seen that choosing a
hyperbolic structure on an ideal tetrahedron ∆ amounts to choosing an edge of ∆ and a modulus
from C−{0, 1}; we will describe algebraic equations which the moduli of these hyperbolic tetrahedra
must automatically satisfy, called the hyperbolic gluing equations of T . Finally, we can use these
moduli to compute the volume of M .
Remark 6.9. Doing this process in reverse, that is, starting with a 3-manifold M not known to
be hyperbolic, triangulating it topologically, and then seeing if the triangulation can be used to
give M a hyperbolic structure, is more subtle, as we shall see, though of course it is much more
interesting, if one wants to find new hyperbolic 3-manifolds.

We start with a well-known comment on isometries of H3. They can be divided into three
categories: the first, of elliptic type, have fixed points in H3. Otherwise, parabolic isometries
are, up to conjugation, Poincaré extensions of translations of ∂H3, and therefore fix one point
on the sphere at infinity; it can be shown, furthermore, that they set-wise fix each horosphere
centered at this fixed point, (and therefore, up to conjugacy, restrict to Euclidean translations on
the horospheres), see [1]. Loxodromic isometries are, up to conjugacy, extensions of dilations and
fix two points of the sphere at infinity. Recalling that M = H3/Γ, it follows that no elements of Γ
are elliptic. One can also show that Γ contains parabolic elements if and only if M is non-complete.
More specifically, let L(v) be a link of M and let V be the surface that corresponds to taking a slice
of L(v); then π1(V ) is naturally realized as a subgroup of π1(M), and one can show that, under
any holonomy, its image must consist of parabolic elements fixing the same point w ∈ ∂H3 (this
point “covers” the cusp v) (this group of parabolic isometries will be referred to as the holonomy
of the link L(v)).

Now, consider ∆ ∈ T as a simply connected subspace of M . We have

Theorem 6.7. The closure in H̄3 of any connected component of π−1(∆) contains at most 4 points.

Proof. Suppose {xn} is a sequence of points in ∆, converging to a vertex v in the closure ∆̄. Then
the lift of this sequence is a divergent sequence in H3, and we can choose a subsequence which
converges to a point x ∈ ∂H3, which, by the previous discussion, is fixed by the holonomy of the
link L(v). The lift of any regular neighborhood of v in M must be stabilized by this holonomy, and
therefore must be contained in some horoball centered at x. Therefore the sequence {xn} can have
at most one limit point in ∂H3, as desired.

We will obtain less than 4 points from the above construction if and only one or more edges of
∆ lifts to a loop in H̄3. We call such an edge homotopically trivial. Suppose for now that none of
the edges of T are homotopically trivial (later, will discuss conditions on the topology of (M,T )
for this to be the case). Because 4 distinct points on ∂H3 uniquely determine a hyperbolic ideal
tetrahedron, we can, by Theorem 6.7, associate a hyperbolic tetrahedron to each ∆ ∈ T , well-
defined up to congruence, on which, by construction, π−1 restricts to an isometry. We have seen
that every hyperbolic tetrahedron is determined by an element of C − {0, 1}, once we choose an
edge. Fix a generic ∆ ∈ T , and write z(∆) for one of the moduli.

Remark that our construction of moduli for tetrahedra depended on a choice of orientation.
Now, each topological ideal tetrahedron ∆ ∈ T is positively oriented, by construction (the orienta-
tion of M is chosen to be the one induced by the triangulation), and π is orientation preserving.
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However, recall that we are not lifting the topological tetrahedra by π−1; instead, we lift just the
vertices, and take the tetrahedron they determine. Now, the vertices, ordered by the orientation
on ∆, are enough to induce an orientation on this lifted tetrahedron, however, this orientation may
now be negative (with respect to the fixed orientation of H3) instead of positive. Geometrically,
this corresponds to the following situation, where a face of the topological lifting is essentially on
the “wrong side” of the hyperbolic tetrahedron:

Figure 11: A positively oriented topological tetrahedron (pictured in U3) whose straightening will
be negatively oriented

By construction, z(∆) is in the lower half plane if and only if such a “folding over” occurs
(because this is the only situation where the choice of hyperbolic tetrahedron to replace ∆ will be
negatively oriented). When such a phenomenon occurs, the hyperbolic triangulation of M by our
straightened tetrahedra will not be embedded.

Furthermore, regardless of orientation, the four lifted vertices of ∆ may actually be on a hyper-
plane, in which case the hyperbolic tetrahedron that we get is degenerate, and its moduli are on
the real line.

For these two reasons, the induced hyperbolic triangulation T cannot actually be glued up
via hyperbolic isometries to induce a hyperbolic structure on M ; this is our follow-up to Remark
6.8. However, the geometric picture still ensures that the tetrahedra fit together around each
edge (despite the fact that they may overlap). In other words, choose an edge in the hyperbolic
triangulation, let {Ei}m

1 be the set of tetrahedra from T which abut this edge, and let z(Ei) be the
modulus of Ei corresponding to the chosen edge. Then we have

m∏

i=1

z(Ei) = 1 (28)

m∑

i=1

arg(z(Ei)) = 2π, (29)

recalling that the modulus at a vertex is, by definition, the ratio of the other two edges. These are
called the edge equations of the triangulation T . Here’s a picture in the positively oriented case:
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Figure 12: Links of tetrahedra fitting around an edge

Furthermore, the moduli satisfy equations corresponding to the fact that the hyperbolic struc-
ture on M is complete. Specifically, choose a cusp v ∈ M , with link L(v) ∼= V × (0,∞); in abuse of
notation, we let L(v) denote a particular slice of the link, i.e., a copy of V in M . (This is standard
practice). First remark that the triangulation T induces a triangulation T ′ of L(v) (possibly degen-
erate, e.g., non-embedded). (It also induces an orientation on V , proving that L(v) is orientable).
Furthermore, once we have chosen a hyperbolic structure on the tetrahedra in T , the triangles
in T ′ correspond to links of those tetrahedra, so they each have an induced Euclidean similarity
structure. What’s more, by the edge equations, these links fit together geometrically along their
edges, so the similarity structure globalizes to all of L(v).

Remark 6.10. Note that the only orientable surface which can be given a Euclidean similarity
structure is the torus. So (assuming that all non-compact hyperbolic 3-manifolds with finite volume
can be ideally topologically triangulated, which is true), we have shown a priori that the links of
the cusps of all finite-volume hyperbolic 3-manifolds are tori.

Theorem 6.8. If the manifold M is complete, then the similarity structure on L(v), for each cusp
v ∈ M , is actually a geometric structure.

Proof. In what follows, by simplicial loop, we mean a simple loop on a triangulated surface which
consists of edges of the triangulation.

Assume M is complete, fix a covering map π : H3 → M , and let L(v) be any of the triangulated
links of M . We can remove two simplicial loops on L(v) which generate its fundamental group,
obtaining a simply connected subspace of L(v) which we can develop into U3 via π, leaving us
with a horizontal subset of U3 whose closure is a triangulated polygon. The identifications on the
edges of this polygon which glue it up into L(v) are induced by isometries belonging to a discrete
subgroup Γ ∈ Isom+(H3), which are parabolic fixing the same point v ∈ ∂U3, which we can assume
is ∞. Therefore they act Euclidean isometries along a horosphere, inducing a Euclidean structure
on L(v).

In particular, the holonomy of L(v) is contained in Isom+(E2) by Theorem 6.5, and therefore,
thinking of similarities of E2 ∼= C as maps ax+ b, b, x ∈ C, a ∈ C∗, it follows that the images of the
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generators of π1(L(v)) = Z2 under any holonomy have derivative one. (Note that the derivative
of a similarity is conjugation-invariant). Now, suppose we have some directed simplicial loop γ
in L(v). Fixing a side of γ (say, “on the right” as we move along it), we record, at each vertex
in γ, a number of moduli of tetrahedra. Then, it is not hard to see that the product of all these
moduli is precisely the derivative of the holonomy of γ (recall again that the moduli are just ratios
of adjacent sides, and, for example, construction from the proof of Theorem 6.8). Thus, for every
oriented simplicial loop in T , we get an equation, since this product must equal 1 if M is to be
complete. These are called the cusp equations of T .

Finally, we remark that though the hyperbolic triangulation of M that we have constructed
may not be embedded, the homology class (i.e., the fundamental class of M) represented by the
two sets of simplices (hyperbolic and topological) agree (the argument is straightforward, see [1, p.
106] for details). Therefore the map from the hyperbolic triangulation into M has degree one, and
it follows that if we sum over the algebraic volume

∑

z(∆)|∆∈T

D(z)

(implicitly making some choice of modulus, for each ∆ ∈ T ), we get the volume of M .
For convenience, given an ideal topological triangulation T of a 3-manifold M , we refer to cusp

and edge equations together as the hyperbolic gluing equations of T .

Remark 6.11. Except for this issue of straightenings which are degenerate or folded-over, it can be
shown that the hyperbolic gluing equations are actually sufficient, not only necessary, conditions
on the moduli of a hyperbolic ideal triangulation. In other words, if we have a topological ideal
triangulation (M, T ) of some 3-manifold M , we can write down the same set of equations (even
though there is no hyperbolic structure a priori, as we were assuming before; we can still write
down the equations, formally); then, if we can find a solution such that the moduli live in the
upper half plane, this gives a unique complete hyperbolic structure to M . Thus we can think of
the hyperbolic gluing equations as essentially determining the hyperbolic structure.

7 The Volume Conjecture

Let L ⊂ S3 be a knot such that M = S3−L is a complete hyperbolic 3-manifold; L is called a hyper-
bolic knot. From our exposition so far, hyperbolic geometry and quantum knot invariants, though
they both describe properties of 3-dimensional situations, seem to have absolutely no connection.
Thus the following conjecture is quite remarkable:

Conjecture 7.1 (Hyperbolic Volume Conjecture).

2π × lim
N→∞

| log F ′
n(L)|

N
= vol(M)

In words, the asymptotic growth of the colored Jones polynomial determines the hyperbolic volume
of the knot complement.

In this conjecture, as in the second part of §5, we are implicitly setting q = e2πi/N in F ′
N (L).

We fix this convention throughout.
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In this section, we will give an account of the connection between these two invariants of L, and
outline an incomplete, but quite tantalizing, framework in which the Volume Conjecture might be
proven. We follow [29]; as far as the author is aware, this should be called Yokota’s (pseudo)proof.
In particular, we give a proof of the following theorem, whose precise statement must wait until
the end of the section:

Theorem 7.1. For large N , F ′
n(L) can be approximated as

F ′
N (L) ≈

∑

s1,s2,...,sn

χ(qs1 , qs2 , . . . , qsm) · e
N
2πi V (qs1 ,qs2 ,...,qsm ), q = e

2πi
N (30)

where V (z1, z2, . . . zm) ∈ C is a certain sum of dilogarithm functions, and the absolute value of
χ(z1, z2, . . . , zm) grows at most polynomially as N → ∞, at least when z1, . . . zm are on the unit
circle (as in (30)). (The sum in (30) is over certain integers between 1 and N , which will be
explicated in what follows). Furthermore, there is a branch V0 of V such that a certain solution
ζ = (ζ1, . . . , ζm) to the stationary phase equations

∂V0

∂z1
= 0,

∂V0

∂z2
= 0, · · · ,

∂V0

∂zm
= 0

corresponds to a solution to the hyperbolic gluing equations for a certain triangulation of M , and
we have

vol(M) = Im(V (ζ1, ζ2, . . . , ζm))

The existence of such a potential function for a set of hyperbolic gluing equations, whose
imaginary part gives the hyperbolic volume, is an interesting result in itself, investigated for the
first time, I believe, by Neumann and Zagier in [19]. The results of this section give a combinatorial
way to deduce this function, at least for a particular set of triangulated hyperbolic 3-manifolds.

To see how Theorem 7.1 relates to Conjecture 1, note that, heuristically, we might hope to be
able to replace the sum in (30) by an integral, as N goes to ∞; then (30) becomes an oscillatory
integral. Then by the so-called saddle-point or stationary-phase approximation, the integral would
converge to e(N/2πi)Vi(α), α being the critical point of V or one of its branches such that V (α) has
maximal imaginary part. Conjecturally, the ζ in Theorem 7.1 satisfies this property. Then we
would have 2π × limN→∞

| log F ′
n(L)|

N = Im(V (ζ)) = vol(M), as desired. Note, however, that ζ may
not be on the unit circle, whereas in (30), V is only evaluated at points on the unit circle. And
once we move off the unit circle, the function χ might grow exponentially (and even if it does not,
we don’t know if we can deform the contour of integration off of the unit circle, while preserving
the asymptotics). Thus the Volume Conjecture is reduced to a number of subtle analytic questions,
and it is unclear how these relate to the general geometric picture which we here describe.

It may be helpful to give a brief overview of what follows. We start out with a diagram D for
our knot L, and from this diagram, we obtain an ideal topological triangulation of M = S3 − L
with two points removed. We collapse these two points into the knot, degenerating many of the
original tetrahedra, and obtaining an ideal topological triangulation of M . We then describe the
edges of this triangulation S explicitly, to uncover the hyperbolic gluing equations on the moduli
of the tetrahedra.

The first serendipitous result is that the hyperbolic gluing equations can be rewritten to depend
not on a function from the set of tetrahedra of S to C, but a function from the edges of the diagram
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to C. This should be seen as quite an important step, in view of the fact that our formalism for
computing F ′

N−1(L) is in terms of states on the edges of the knot diagram. Next, we define a
function V (z) which is the sum of one dilogarithm per tetrahedra in S. Using some of the remaining
hyperbolic gluing equations, we show that this function has a critical point at the solution to these
equations, and that at this critical point, its imaginary part gives the hyperbolic volume.

To finish, we compute F ′
N−1(L) from the knot diagram. There is a close connection between the

asymptotics of the quantum factorials appearing in the R-matrix for F ′
N−1(L), and the dilogarithm

function. However, it seems at first that F ′
N−1(L) will give the volume of the original triangulation

of M missing two points, before we collapsed it to a true triangulation. On closer inspection,
however, a series of miraculous cancellations occur, and we eliminate all factorials from F ′

N−1(L)
corresponding to the tetrahedra that have collapsed. Theorem 7.1 follows immediately.

7.1 Preliminaries

Let L be a knot in S3, and let D be a diagram of L, which we will think of as a 4-valent graph
lying in S2. In this section, we prepare some notation concerning D.

Let n ∈ N be the number of crossings of D, and let {X1, . . . Xn} denote these crossings, which
are the vertices of D; we will use the terms crossing and vertex interchangeably.

Theorem 7.2. D has n + 2 faces

Proof. It can be easily checked that D has 2n edges, so the result follows from χ(S2) = 2.

Let {R0, . . . Rn+1} denote the faces of D. We choose a non-crossing point p ∈ D to be the point
at infinity of S2 = R2 ∪ ∞; our heuristic will be to consider D “broken” at p, to obtain a (1,1)
tangle, though we will not incorporate this “breaking” into the diagram D (i.e., we merely consider
p as a distinguished point on D). Without loss of generality, we take R0 and Rn+1 to be the two
faces of D which have p on their boundary (of course, we can assume they’re distinct, or else we
can reduce the number of crossings in D). In our illustrations, we will depict D in R2, with the
edge intersecting p broken in half, so that R0 and Rn+1 are the two unbounded faces. See Figure
13 (though we have not yet described all the structure from the figure).

Let D∗ denote the dual graph of D, and write {X∗
1 , . . . X∗

n} for the faces of D∗, and {R∗
0, . . . R

∗
n+1}

for its vertices. Note that D ∩D∗ consists of one point for each edge of D; we call this point the
midpoint of the corresponding edge. An overpass of D is the obvious thing: a maximal continuous
arc of the diagram, going from the midpoint of some edge to the midpoint of another edge, which
only crosses over all the vertices it contains. We define underpass analogously, and refer to them
collectively as passes. Let PD denote the set of passes of D , P+

D the set of overpasses, and P−D the
set of underpasses (we will be switching to a different diagram later on, so it is important to keep
track of D in our notation). Let ED denote the edges of D. An edge of D is called alternating if
it goes over one of its vertices and under the other; an alternating edge intersects an overpass and
an underpass. Otherwise, the edge is called non-alternating, and it is contained entirely in a single
pass. Let KD denote the set of non-alternating edges of D, K+

D the non-alternating edges contained
in an overpass, and K−D the non-alternating edges contained in an underpass. Without loss of
generality, we assume that p, the broken point, is the midpoint of an alternating edge. Suppose
that ϕ+ and ϕ− are the underpass and overpass, respectively, which contain p. Then, start at p,
continue along D in the direction of ϕ+, and denote by Xa the first undercrossing you come to.
Similarly, starting at p and continuing in the direction of ϕ−, let Xb be the first overcrossing you
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Figure 13: The knot 821, which we will use as our example. We’ve labeled an example of an
alternating edge, as well as the midpoints, and the arc γ.

come to (see Figure 13). We also let X1 and Xn be the vertices adjacent to p, with X1 contained
in the overpass and Xn in the underpass.

Remark 7.1. We think of all the objects defined in this section, e.g. crossings, edges, passes, faces,
etc., as closed subsets of S2, and use corresponding notation: e.g., for ϕ ∈ PD, Xν ∈ ϕ means that
the vertex Xν is contained in the pass ϕ.

In the rest of this section, we cite two lemmas, which allow us to make certain assumptions
on D, up to applying an ambient isotopy. For their proofs, see [29] (the arguments are generally
straightforward: if such a thing were not so, one could reduce the crossing number of D). The first
is

Lemma 7.1. Without loss of generality, we may assume Xa 0= Xb

Let γ be the arc of D connecting Xa to Xb and containing p. Again letting ϕ+ and ϕ− be the
underpass and overpass containing p, Let N1 denote the set of crossings contained in ϕ+, and N0

the set of crossings contained in ϕ−. (It follows that N1 ∪ {Xa, Xb} ∪ N0 is the set of crossings
contained in γ).

Suppose Xν is a crossing of D, and Rµ is a face which abuts Xν . Then there is a corresponding
face X∗

ν ∩Rµ of the graph D ∪D∗; we call this face an angle of Xν , and we say that the pair (ν, µ)
is an angle of D. Given a vertex Xν , let N ∗

ν denote the set of faces abutting Xν . Likewise, given a
face Rµ, let Rµ denote the vertices which border that face.

Lemma 7.2. Without loss of generality, we can assume N ∗
1 ∩N ∗

n = {0, n+1}. We can also assume
that these (X1 and Xn) are the only vertices in γ contained in R0,Rn+1, and that the overpasses
ϕ+ and ϕ− do not intersect each other. Finally, we may assume |N ∗

ν |=4 for all crossings ν.
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For ϕ ∈ PD, let mϕ denote the midpoint of ϕ, which will be either a crossing or a midpoint of an
edge of D, according as ϕ contains an odd or an even number of crossings, respectively. Likewise,
for ε ∈ ED, let mε denote the midpoint of ε.

7.2 Triangulation of Ṁ = S3 − {L ∪ {±∞}}

Now that we have worked out our notation, we introduce an explicit triangulation of M , following
from the combinatorics of D. Such a triangulation is initially discussed in [22], and expounded on
in [29], though note that quite a similar construction is considered as early as [27], and probably
by many others with regards to the hyperbolic geometry of knot complements.

Fix two points ±∞ ∈ S3, assumed to be disjoint from L, which we think of as the poles of
the 3-sphere. Define Ṁ = M − {±∞}. Thinking of S3 − {±∞} as S2 × (−∞,∞), we consider
the diagram D as lying in S2 × {0}. Let p : S3 → S2 be the projection defining D. Then we
can speak of passes of L simply by lifting the passes of D via p−1, in the obvious way. To help
visualize L ⊂ S3, we assume that “most” of each overpass of L lies in S2× {1}, and “most” of each
underpass lies in S2 × {−1}, with dips in between the passes. In fact, we can assume L intersects
S2 × {0} precisely in the lifts of the midpoints of the alternating edges of D (this is explicated in
figures to come).

Now, place one ideal topological octahedron Oν between the two lifts of each crossing Xν of
D, so that two of its (ideal) vertices are on L and project onto Xν (see Figure 14); of the other
vertices, two will project onto an overpass of D, and two onto an underpass of D. We drag the
former to −∞, and the latter to ∞, as shown, so none of the ideal vertices are in our manifold.
To get an ideal triangulation of Ṁ , we divide each of these octahedra into four tetrahedra; then
there is one tetrahedron for each face of D ∪ D∗, in particular, each tetrahedron projects onto a
unique angle of D. We define Sνµ to be the tetrahedron projecting onto (ν, µ). Following along the
knot, each face of each tetrahedron is paired with exactly one other face of some other tetrahedron
(by Lemma 7.2, no two paired faces belong to the same tetrahedron). See Figure 15. Giving the
tetrahedra the orientation induced from Ṁ , we obtain an ideal topological triangulation, which we
will write (Ṁ, Ṡ).

It is not difficult to write down the edges of Ṡ. Indeed, they can be written as follows, where
we have also recorded the parts of D that they are each naturally in bijection with (in particular,
they each can be chosen to naturally project onto the corresponding structure under p. This should
allow the reader to find them e.g. in Figure 15).

1. Ėν = p−1(Xν) ∩ {S2 × (−1, 1)} (crossings)

2. Ḟµ = p−1(R∗
µ) (faces)

3. İλ =

{
p−1(mϕ) ∩ {S2 × (1,∞)} if ϕ ∈ P+

D

p−1(mϕ) ∩ {S2 × (−∞,−1)} if ϕ ∈ P−D
(midpoints of passes)

4. Ḣk =

{
p−1(mκ) ∩ {S2 × (−∞, 1)} if κ ∈ K+

p−1(mκ) ∩ {S2 × (−1,∞)} if κ ∈ K−
(midpoints of non-alternating edges)
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Figure 14: At top left, one of the octahedra Oν . At top right, the projection of Oν onto D before
we’ve dragged the vertices. At bottom, one of the tetrahedra obtained from Oν , after having its
vertices pulled to ±∞. 48



Figure 15:

7.3 Degeneration into a triangulation of M = S3 − L

We now have an ideal triangulation Ṡ of Ṁ , from which we would like to produce an ideal triangu-
lation S of M . Let Q = O1 ∩On, which is a bigon in S3 connecting ±∞ (see Figure 16). It is clear
that Ṁ − Q and M are homeomorphic (we will discuss a particular homeomorphism later in this
section). What’s more, Q projects onto the broken point p, so we can think of ourselves as actually
investigating the complement of a (1,1)-tangle rather than a knot, which perhaps motivates the
presence of a (1,1)-tangle invariant in the Volume Conjecture.

In order to understand how to go from a triangulation of Ṁ to one of M , we go on a brief
digression to discuss the linear degeneration of 3-simplices. Given any 3-simplex, and a choice
of two of its vertices, there is a unique “linear degeneration” into a triangle, which identifies the
two vertices. However, if the 3-simplex is actually an ideal simplex, then this map is no longer
well-defined, because the edge between the two identified vertices gets sent to a vertex, which is
not actually part of the 3-simplex. Assume, however, that that edge has been removed; then the
map is again defined. Likewise, if we choose three vertices to be identified, then there is a unique
linear degeneration of the 3-simplex into a line; on an ideal 3-simplex, the map is defined if the face
determined by the three vertices is removed. See Figure 17 for details.

Our motivating philosophy is as follows. Thinking of Q as the union of two triangles with
vertices ±∞, v (v is on L), there is a unique linear degeneration of Q onto v sending ±∞ to v.
This induces a homeomorphism Ṁ → M . Furthermore, it induces linear degenerations on all the
tetrahedra from Ṡ which intersect Q. Therefore some number of tetrahedra in Ṡ degenerate, and
we are left with a recipe with which to glue together the ones that remain. This should give a
well-defined triangulation S of M because Ṡ was constructed so that no tetrahedron was glued up
to itself.

However, we need to be careful: as we have seen, not all linear degenerations of 3-simplices are
well-defined for ideal tetrahedra. For example, if precisely two edges are removed (and no faces),
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Figure 16:

Figure 17:
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then it is easy to see that we get a well-defined degeneration of an ideal simplex if and only if the
two edges do not share a vertex.

It is not difficult to account for all the degenerations explicitly, from which one can check that
they’re all well-defined. We will describe the degenerations in terms of the octahedra Oν . Note
that the only octahedra intersecting Q in a face are O1 and On. Furthermore, the edges contained
in Q are İϕ− , İϕ+ , Ḟ0, and Ḟn+1. Now recall that N ∗

ν denotes the faces which abut vertex Xν ,
which also correspond to the angles around Xν , and therefore to the tetrahedra around Ėν . We
will let N .

ν denote the tetrahedra around Xν which survive the degeneration.
The possibilities for intersecting Q are as follows:

1. Oν such that ν is 1 or n. All four tetrahedra intersect Q. Two intersect in a face, so degenerate
into a line; the other two intersect in an edge, either İϕ− or İϕ+ , and degenerate onto a single
face. N .

ν = ∅.

2. Oν such that Xν ∈ N0,N1 (i.e., Xν belongs to the same pass as either X1 or Xn). Then
Q ∩Oν is either İϕ+ or İϕ− . All four tetrahedra collapse onto a total of two faces. N .

ν = ∅.

3. Oν such that ν = a, b, and Nν contains R0 or Rn+1 (i.e., Xν borders an unbounded face of the
diagram). Then two tetrahedra intersect Q in the edge İϕ+ or İϕ− , and a third tetrahedron
intersects Q in Ḟn+1 or Ḟ0. |N .

ν | = 1.

4. Oν such that ν = a, b, but neither Xν does not border an unbounded face of the diagram.
Two tetrahedra intersect Q in the edge İϕ+ or İϕ− , and |N .

ν | = 2.

5. Oν such that Xν borders one of the unbounded faces, so that Oν ∩Q consists either of Ḟ0 or
Ḟn+1. The tetrahedron corresponding to the unbounded angle is the only one that collapses,
so |N .

ν | = 3.

6. Oν ∩Q = ∅, |N .
ν | = 4.

Recall that once we know how a tetrahedron intersects Q, we have a unique formula for its
degeneration, simply by collapsing the intersection and applying the corresponding linear degener-
ation. In Figure 18, we’ve drawn the arc γ and the degeneration along it (i.e., the degeneration of
the octahedra Oν such that Xν ∈ N1 ∪ {Xa, xb} ∪N 0.)

Here is a very nice way to describe the tetrahedra which have degenerated. Define a new
diagram G = D− γ (recall the γ is the arc joining Xa, p, and Xb) (Figure 19). G will be a 4-valent
graph except at Xa and Xb, which will be 3-valent. Then the previous discussion implies that the
tetrahedra which survive correspond exactly to the angles of G which do not border the unbounded
region (where we do not count the “double angles” at the trivalent vertices).

7.4 Edges in S

Now we have obtained an ideal topological triangulation S of M . The goal of this section is to
write down the edges of S explicitly, so that we can then write down hyperbolic gluing equations
for S. In order to do this, we will use the diagram G introduce at the end of the previous section.
Our notation for sets of edges and passes of G will be those we have already introduced, swapping
G for D. (The over/under information at the trivalent vertices is still recorded, so that we can
define the passes of G).
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Figure 18: Crossings labeled as in Figure. 13. Remark that there are only 3 non-degenerate
tetrahedra in the picture; two from X3 = Xa, but only one from X7 = Xb, because it is adjacent
to Ḟ9 = Ḟn+1, as we have drawn.

Figure 19: The angles indicated at the right correspond to the tetrahedra which have survived the
degeneration. Uc and Ud are the faces which contain the two missing arcs, and abut the trivalent
vertices.
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Let {U0, . . . , Ut} denote the faces of G; each will be the union of one or more faces of D. Without
loss of generality, we assume U0 is made up of the outer faces: U0 = R0 ∪Rn+1. Likewise, for each
of the trivalent vertices Xa, Xb, there is a unique face of G which abuts that vertex and which
contains the “double angle” (i.e., the face which contains the “missing” arc); let these faces be Uc

and Ud, respectively (note: we may have c = d).
We recall that EG denotes the set of edges in G (note that these are simply unions of edges

from ED). For this section, we introduce a little more notation: suppose ϕ ∈ PG is a pass of G.
Then Eϕ

G denotes the set of edges which intersect ϕ, and E∂ϕ
G ⊂ Eϕ

G denotes the two alternating
edges which intersect ϕ at its beginning and end. E0

G is the set of edges which intersects the outer
face U0. Finally, let α,β ∈ PG be the passes which “dead-end” at Xa and Xb, respectively (i.e.,
the passes which, if in D, would continue into the missing arc).

Theorem 7.3. The set of edges in S can be written as

{Eν |Xν 0∈ γ} ∪{ Fτ |1 ≤ τ ≤ t, τ 0= c, d} ∪{ Iϕ|ϕ ∈ PG} ∪
⋃

ϕ∈PG

{
Hε|ε ∈ Eϕ

G −
(
E∂ϕ

G ∪ E0
G

)}
(31)

where we set Iα = Iβ if c = d. (Recall that Xν 0∈ γ is the same as Xν 0∈ N1 ∪ {a, b} ∪N 0).

Theorem 7.3 is proved by explicitly examining the collapse of the tetrahedra in Ṡ. Here we give
an overview. Beforehand, we make a remark about depictions of tetrahedra. Each of the octahedra
Oν , before collapse, has a core, by which we mean the set of four faces which intersect Ėν (see
Figure 21 for a good picture). In our figures, we will omit the outer faces, drawing only the core,
so as to see the edges more clearly.

Now we begin. First, note that if Xν 0∈ γ, it is easy to see that Ėν does not degenerate and gets
sent to its own edge Eν . Likewise, if t 0= c, d, then we just get the edges {Ḟµ|Rµ ⊂ Ut} degenerating
to a single edge Ft (as has been illustrated in Figure 18; this is just the statement that the two
edges Ḟ7 and Ḟ3 are getting identified “through” X2 on γ).

Now, for an edge ε ∈ EG, we define the following two sets of edges related to ε:

Gε = {Ėν |Xν ∈ N1, Xν ⊂ ε} ∪{ İµ|µ ∈ P+
D , (µ ∩ ε) 0= ∅} ∪ {Ḣη|η ∈ K−D, η ⊂ ε}

Ḡε = {Ėν |Xν ∈ N0, Xν ⊂ ε} ∪{ İµ|µ ∈ P−D , (µ ∩ ε) 0= ∅} ∪ {Ḣη|η ∈ K+
D, η ⊂ ε}

Theorem 7.4. Let ϕ ∈ P+
G . Then the edges in

⋃
ε∈Eϕ

G
Gε are sent to a single edge Iϕ in S. Further,

the edges in Ḡε, for each ε ∈ Eϕ
G, go to a single edge Hε. If ϕ ∈ P−G , then the edges in

⋃
ε∈Eϕ

G
Ḡε go

to Iϕ in S, and the edges in Gε, for each ε ∈ Eϕ
G, go to Hε.

Proof. First note that if ϕ ∈ PG does not intersect γ, i.e., it is just a pass from D, then the
theorem is obvious. To see this, note that in this case all edges ε such that ε ∈ Eϕ

G must also not
intersect γ, i.e., they are just edges from D. Suppose that ϕ is an overpass. Then if ε ∈ Eϕ

G is
non-alternating, we have Gε = {İϕ}, Ḡε = {Ḣε}. If ε is alternating, then Gε = {İϕ}, Ḡε = {İµ}
where µ is some underpass from D. So in this case,

⋃
ε∈Eϕ

G
Gε contains only İϕ, Ḡε contains only Ḣε

or İµ, and the theorem just states that certain edges are identified to themselves (similarly if ϕ is
an underpassing.)
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If ϕ intersects γ, we must just write down the explicit edge degeneration. We give an example.
In Figure 20, ϕ ∈ P+

G is the overpassing of G which contains Ė2 (i.e. the overpassing which contains
X2). Let ε denote the edge of D between X5 and X2. Then we see that Ḣε collapses into Ė2 from
one side (the dotted edge on the left of Ė2), and İϕ collapses to Ė2 from the right (the other dotted
line) (just follow the arrows). Thus these edges are all identified in S. Similar considerations for
the other possible cases complete the proof.

Figure 20: (note that the figure says φ instead of ϕ)

Note, however, (as we have seen explicitly in the case that ε ∈ EG is also in ED), that Hε = Iϕ

for some ϕ ∈ PG if ε is an alternating edge, i.e., ε ∈ E∂ϕ
G .

Now we account for the collapse of the edges Ḟ0, Ḟn+1.

Theorem 7.5. If ε ∈ EG is a non-alternating edge such that ε ∈ E0, then the edge Hε given in
Theorem 7.4 is actually equal to Iϕ, where Iϕ, where ϕ pass containing ε.

Proof. As before, we see how our triangulation degenerates in response to the degeneration of Ḟ0

and Ḟn+1. In particular, the claim is simply the statement that, when the red curve (Ḟ0 or Ḟn+1)
is collapsed in Figure 21, the identification on the edges induced by the linear degeneration of the
tetrahedra sends Ḣg → İg, and İf → Ḣf .

Now remark that
{Ėν |ν 0∈ γ} ∪{ Ḟµ|Rµ 0⊂ Uc, Ud} ∪

⋃

ε∈EG

(
Gε ∪ Ḡε

)
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Figure 21:

Figure 22: Ḟm, in Uc, collapsing to Iα.

55



consists of all the edges of Ṡ other than Ėa, Ėb, and {Ḟµ|µ ⊂ Uc ∪Ud}. These go either to Iα or Iβ,
as shown in Figure 22.

Thus we have accounted for all the edges in Ṡ, and one can go back and check that we have
gotten precisely the edges from Theorem 7.3:

{Eν |ν 0∈ N1∪{a, b}∪N0}∪{Fτ |1 ≤ τ ≤ t, t 0= c, d}∪{Iϕ|ϕ ∈ PG}∪
(
∪ϕ∈PG{Hε|ε ∈ Eϕ

G − {E∂ϕ
G ∪ E0

G}}
)

Lemma 7.3. None of these edges are homotopically trivial.

Recall from §6 that this means that when we lift each edge via π−1, (π : H3 → M being a
covering map determining the complete hyperbolic structure on M), none of the edges lift to a loop
in H̄3. It turns out that this is equivalent to saying that none of the edges of S are homotopic to a
portion of the knot. Yokota gives an incomplete proof that this is the case. The author intends to
go through it fully in the near feature. Assuming Lemma 7.3 is true, then, by the results of §6, the
hyperbolic gluing equations for S have a unique solution. We shall assume this in what follows.

7.5 Hyperbolic Gluing Equations

In this section we write down the hyperbolic gluing equations for S and define the potential function
V (z) whose imaginary part at a critical point gives the hyperbolic volume of M .

For convenience, we recall the edges of S:

{Eν |Xν 0∈ γ} ∪{ Fτ |1 ≤ τ ≤ t, τ 0= c, d} ∪{ Iϕ|ϕ ∈ PG} ∪
⋃

ϕ∈PG

{
Hε|ε ∈ Eϕ

G −
(
E∂ϕ

G ∪ E0
G

)}

with Iα = Iβ if c = d.
The tetrahedra in S are those from Ṡ which survive the degeneration, and therefore we can

use the same notation Sνµ to refer to them (recall that Sνµ projects onto the angle (ν, µ) of D).
Recall that, to “straighten out” a non-degenerate ideal topological triangulation of a complete
hyperbolic 3-manifold, we assign each tetrahedron a modulus, corresponding to a choice of edge
(opposite edges giving the same moduli), and then we can obtain a set of equations that they must
satisfy. Each tetrahedron Sνµ in S has a pair of opposite edges Eν , Fµ. Let zνµ denote the modulus
corresponding to these edges. As we have seen, the tetrahedra in S correspond precisely to the
angles of G (minus those angles which either border the unbounded face U0, or those that form
a “double” angle around one of the trivalent vertices of G). Therefore, letting z : EG → C be
some function, we can use this function to assign a modulus to each tetrahedron in S by letting
zνµ = z(ε)/z(η), see Figure 23:

A solution to H obtained in this manner will be called edge determined.

Theorem 7.6. Any solution to H must be edge determined, by a function z : EG → C such that
z(E0

G) = 1.

Proof. To prove the theorem, we show there is a subset of equations in H which are satisfied if and
only if the moduli are edge-determined by such a function z.

In particular, we will consider the edge equations corresponding to {Eν |ν 0∈ γ}, {Fτ |τ 0=
c, d}, Iα, Iβ, and two cusp equations. Recall that N .

ν denotes the faces Rµ corresponding to the
tetrahedra around Xν that did not degenerate, that Rµ is the set of crossings bordering Rµ, and
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Figure 23:

that N1 and N0 are the vertices in γ, 0= Xa, Xb. The edge equations around Eν are easy to write
down: ∏

Rµ∈N &
ν

zνµ = 1

Clearly all solutions to these equations are edge-determined: just go in a circle around the given
crossing, and set the value of z at each edge to be the ratio of adjacent moduli; that the value of
this function z so obtained can be chosen to be 1 on E0

G is due exactly to the fact that there is no
modulus at an unbounded angle, because the tetrahedron there has degenerated. Likewise, around
Fτ , τ 0= c, d, we get the equation

∏

µ|Rµ⊂Uτ





∏

ν∈Rµ−(N1∪N0)

zνµ




 = 1,

and it is equally easy to see these are edge determined—now we go in a circle around the boundary
of the given face Ut, again setting the value of z on an edge bordering Ut to be the ratio of adjacent
moduli. However, if we do this around Uc or Ud, we will run into a problem at the trivalent vertex,
which does not correspond to any moduli in the interior or Uc/d. Indeed, suppose that z1, z2 are
both moduli around Xa which have not degenerated (the angles they correspond to are outside of
Uc). Then, if we try to edge-determine the moduli, the product around Uc will be z1z2. Thus the
following Lemma proves Theorem 7.6:

Lemma 7.4. We can replace the edge equations around Iα and Iβ by

∏

µ|Rµ⊂Uc





∏

ν∈Rµ−(N1∪N0)

zνµ




 =
∏

µ∈N &
a

zaµ,
∏

µ|Rµ⊂Ud





∏

ν∈Rµ−(N1∪N0)

zνµ




 =
∏

µ∈N &
b

zbµ

if c 0= d and with

∏

µ|Rµ⊂Uc





∏

ν∈Rµ−(N1∪N0)

zνµ




 ·
∏

µ|Rµ⊂Ud





∏

ν∈Rµ−(N1∪N0)

zνµ




 =
∏

µ∈N &
a

zaµ ·
∏

µ∈N &
b

zbµ

if c = d.
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Proof. First recall that the edges Ḟµ have collapsed to Iα, when Rµ ⊂ Uc (and likewise for Iβ and
Rµ ⊂ Ud.) Thus the edge equations around Iα, Iβ can be written as

x ·
∏

µ|Rµ⊂Uc




∏

ν∈Rµ−(N1∪N2)

zνµ



 = 1, y ·
∏

µ|Rµ⊂Ud




∏

ν∈Rµ−(N1∪N2)

zνµ



 = 1 (32)

if c 0= d and as

xy ·
∏

µ|Rµ⊂Uc




∏

ν∈Rµ−(N1∪N2)

zνµ



 ·
∏

µ|Rµ⊂Ud




∏

ν∈Rµ−(N1∪N2)

zνµ



 = 1 (33)

if c = d, where x and y are complex numbers corresponding to the other moduli around Iα and Iβ ,
respectively.

To rewrite these equations, we will combine them with certain cusp equations. In particular,
recall that the two tetrahedra at Xa which were facing X1 degenerated onto a bigon, see Figure
22. In what follows, let L̇ denote a regular neighborhood of L triangulated by Ṡ, and L the same
neighborhood triangulated by S. The red loop drawn in Figure 22, and blown up in Figure 24, is
a simplicial loop on L, (we have also drawn it in red on the picture of L̇ in Figure 26). Oriented
as indicated, the moduli at its right are those that correspond to the edge Eν of the tetrahedra in
N .

a , as well as any moduli belonging to the edges which get identified to Iα from the right. The
only edges identified to Iα from the left are Ḟµ with Rµ ⊂ Uc, so it follows that the equation from
this cusp is

Figure 24:

x ·
∏

µ∈N &
a

zaµ = 1

with x as in (32). Likewise, for Xb and Ud, we get

y ·
∏

µ∈N &
b

zbµ = 1

with y as in (32). These substitute into (32) to give the desired result.
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Figure 25:

Figure 26: Triangulation of the knot L by Ṡ
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It is evident how we obtained the triangulation L̇ in Figure 26. Remark that to go from L̇
to L, we need to glue the triangulations of regular neighborhoods of ±∞ to L̇ along Q; this can
be described explicitly, see [29]. We then collapse the edges in L̇ which correspond to faces of
tetrahedra that have degenerated. Note, however, that for the edges Hε, the entire edge equations
can be read from L̇. Remark that any edges of Ṡ intersecting L̇ of correspond to vertices on L̇,
surrounded by some number of triangles corresponding to tetrahedra. We call this situation the star
of the edge. Now, by Theorem 7.6, without loss of generality, we can choose a function z : EG → C
such that z(E0

G) = 1, and assume that it determines the moduli of our triangulation. We will read
some more edge equations of S, from L̇, and deduce a potential function for these equations.

We write sgn(ν, µ) = 1 if ε crosses over η, and sgn(ν, µ) = −1 if ε crosses under η, in Figure 23.
Given an angle (ν, µ), write ενµ and ηνµ for the corresponding edges.

Theorem 7.7. Let

V (z) =
∑

ν∈N

∑

µ∈N &
ν

sgn(ν, µ)Li2
(
zsgn(ν,µ)
νµ

)
=

∑

ν∈N

∑

µ∈N &
ν

sgn(ν, µ)Li2

((
z(ενµ)
z(ηνµ)

)sgn(ν,µ)
)

Then when z0 is a labeling which determines a solution to the hyperbolic edge equations, we have
∂V0(z)
∂z(ε) |z0 = 0 for some branch of V . Furthermore, Im(V (z0)) = Vol(M).

Proof. Suppose we have an edge ε ∈ EG − E0
G, surrounded by edges e, f, g, h as in Figure 27. In

Figure 26, we have colored in gray the stars corresponding to Hε, ε non-alternating. As mentioned,
these will descend to stars of L, possibly with some edges collapsed.

Figure 27:

If ε is contained in an overpass, and Xa 0∈ ε, then the star of Hε in L looks like 28, and the edge
relations around Hε can be read as

1− z(f)/z(ε)
1− z(e)/z(ε)

· 1− z(g)/z(ε)
1− z(h)/z(ε)

= 1

Letting

Vε = Li2(z(e)/z(ε))− Li2(z(f)/z(ε))− Li2(z(g)/z(ε)) + Li2(z(h)/z(ε))± 2πi log z(ε)

we see that ∂Vε(z)/∂z(ε) vanishes at the hyperbolic edge solution, because the dihedral angles
around the edge Hε must add up to 2π (the author is unsure at present about the details of the
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Figure 28:

sign choice, but it should not be difficult to uncover). Otherwise, one simply takes the derivative,
using the defintion of Li2 as an integral from §6, to verify the above claim.

If Xa ∈ ε, then one of the edges η from {e, f, g, h} does not exist, as there are only 3 tetrahedra
abutting Hε. Therefore we simply set z(η) = 0 above.

The situation is similar when ε is contained in an underpass. If Xb 0∈ ε, then the star of Hε

looks like Figure 29, and the equation we get is

1− z(ε)/z(e)
1− z(ε)/z(f)

· 1− z(ε)/z(h)
1− z(ε)/z(g)

= 1

whose potential function is

Vε = −Li2(z(ε)/z(e)) + Li2(z(ε)/z(f)) + Li2(z(ε)/z(g)) + Li2(z(ε)/z(h))± 2πi log z(ε)

Again, if Xb ∈ ε, an edge η from {f, e, g, h} does not exist, and we set z(η) = ∞.
Now suppose ε is an alternating edge, between the overpass Iϕ and the underpass Iγ . A piece

of the star of these two edges in L is shown in Figure 30, and highlighted in blue in 26. We have
also drawn two meridians, in red. Note that z1z2 = −1/z3 for the three moduli of a tetrahedron.
Then we write down two cusp equations, one per each of the red meridians, along the inside of the
meridian (the side facing the other one). It is easy to reduce this to the equation

1− z(f)/z(ε)
1− z(e)/z(ε)

=
1− z(ε)/z(h)
1− z(ε)/z(g)

whose potential function is

Vε = Li2(z(e)/z(ε))− Li2(z(f)/z(ε)) + Li2(z(ε)/z(g))− Li2(z(ε)/z(h))
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Figure 29:

Figure 30:
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Now, summing all the distinct terms from all the Vε, we get

V (z) :=
∑

ν∈N

∑

µ∈N &
ν

sgn(ν, µ)Li2

((
z(ενµ)
z(ηνµ)

)sgn(ν,µ)
)

Therefore, a branch of V has a critical point at the solution to the hyperbolic gluing equations
(note that changing the branch of a dilogarithm Li2(z) corresponds to adding a term of the form
±2πi log(z)). Finally, it is easy to compute

ImV (z) =
∑

ν∈N

∑

µ∈N &

D(zνµ) +
∑

ε∈EG−EG0

log |z(ε)| · Imz(ε)
∂V (z)
∂z(ε)

where D(z) = ImLi2(z)+log |z| arg(1−z) is the Bloch-Wigner function from §6. Thus, at a critical
point, we have ImV (z) =

∑
ν∈N

∑
µ∈N & D(zνµ) = Vol(M), as desired.

7.6 Computing the Colored Jones Polynomial

Now that we have defined the potential function V (z), we just need to compute F ′
N−1(L) and show

that is has the form in (30).
We recall the state-sum definition of F ′

N−1(L), which we will use to compute it. We take the
graph D, orient it, and insert a set X of vertices at its maxima and minima, with signs as in
Figure 31. This new graph, with more vertices and edges, will still be denoted D. We let N
denote the set of vertices of D which come from crossings, and Ψ̇ the set of functions (states)
σ : ED → {0, . . . , N − 1}, which take the value 0 on the broken edge, from X1 to Xn, intersecting
p ∈ D.

Figure 31: Signs for vertices

Then we have

FN−1(L′) =
∏

ξ∈X
−qsgn(ξ)/2 ·

∑

σ∈Ψ̇




∏

ν∈N
〈D|σ〉ν

∏

ξ∈X
δσ(xξ)+1,σ(yξ)





where
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〈D|σ〉ν =

{
(S)σ(eν)σ(fν)

σ(gν)σ(hν) if sgn(ν) = 1

(S̄)σ(fν)σ(eν)
σ(hν)σ(gν) if sgn(ν) = −1

with

(S)ij
kl = Nq−1/2−(k−j)(i−l+1) θij

kl

(q̄)i−j(q)j−l(q̄)l−k−1(q̄)k−i

(S̄)ij
kl = Nq1/2+(i−l)(k−j+1) θij

kl

(q)i−j(q̄)j−l(q)l−k−1(q̄)k−i

[m] = residue of m in {1, . . . N}
(w)m = (1− w)(1− w2) . . . (1− w[m]), called the quantum factorial .

θij
kl =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,
0 otherwise.

q = e2πi/N

and the overbar denoting inversion. Furthermore, by the wedge of Xν ∈ N we will mean the
face Rµ of D which intersects the angle (ν, µ) of Xν between the edges gν and hν (see Figure 31).

Remark 7.2. Again, note that θ = 1 if and only if qi, qj , ql, qk go around the unit circle clockwise,
and l 0= k.

For each σ ∈ Ψ̇ and choice (ν, µ) of angle of D, define (with ε, η as in Figure 23):

σ(ν, µ) =

{
[σ(ε)− σ(η)− 1] if Rµ is the wedge of Xν

[σ(ε)− σ(η)] otherwise

Then, using the identity
(q)s = ±(−1)sqs(s+1)/2(q̄)s,

we can rewrite 〈D|σ〉ν as

〈D|σ〉ν = ±Nqσ(eν−gν)−sgn(ν)/2
∏

µ∈N ∗
ν

1(
qsgn(ν,µ)

)
sgn(ν,µ)σ(ν,µ)

(34)

up to a factor of θ. Thus, a priori, to compute F ′
N−1(L) we are taking the sum over indices of

a large product which has one quantum factorial for each angle of L, i.e., one factorial for each
tetrahedron in Ṡ. Now, observe that, for large N ,

1
(q)[s]

= exp

(
−N

2π

s∑

k=1

2π

N
log(1− qk)

)
≈ χ(s, N) · exp

(
−N

2π

∫ 2πs/N

0
log

(
1− exi

)
dx

)

= χ(s, N) · exp
(
−N

2π

∫ qs

1

log (1− y)
y

dy

)

= χ(s, N) · exp
(

Li2(qs)− π2

6

)

= χ(s, N) · exp (Li2(qs))
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(we have absorbed the polynomial-growth terms into χ). Thus each quantum factorial seems
to be contributing the exponential of a dilogarithm to F ′

N−1(L). This is exactly what we need to
get eV (z), except that we only want dilogarithms for the tetrahedra which survive the degeneration
from Ṡ to S. Note, however, that certainly not all states contribute to the state-sum; a state σ
contributes if and only if

〈D|σ〉 :=
∏

ν∈N
〈D|σ〉ν

∏

ξ∈X
δσ(xξ)+1,σ(yξ) 0= 0

Therefore we might hope, after accounting for the non-contributing states, to eliminate from
F ′

N−1(L) the factorials associated to degenerating tetrahedra, and indeed, somewhat miraculously,
this is possible. Thus the dilogarithms we are left with correspond precisely to the tetrahedra in S.

First we have

Lemma 7.5. Suppose σ is contributing. Then

1. σ(ν, µ) = 0 if the angle (ν, µ) is unbounded, i.e. µ ∈ {0, n + 1}.

2.
∑

ν∈Rµ
= N − 1 if Rµ is bounded, i.e., µ 0∈ {0, n + 1} (the sum of angles around a bounded

face is N − 1).

3.
∑

µ∈Qν
σ(ν, µ) = N − 1 (the sum of angles around a crossing is N − 1).

Proof. First, we prove

Lemma 7.6.
∑

ν∈Rµ
σ(ν, µ) ≡ −1 mod N unless µ ∈ {0, n + 1}.

Proof. Give ∂Rµ the counter-clockwise orientation, and let vξ, for ξ ∈ X ∩ ∂Rµ, denote the vector
tangent to ∂Rµ at ξ. Then, according as the orientation of D at ξ agrees with the counter clockwise
orientation of Rµ, we have vξ = uξ or vξ = −uξ. Call ξ positive in the former case, and negative in
the latter; then ξ is called a positive or negative maximum or minimum according as ξ is a local
maximum or minimum. Let pµ, pµ, qµ, qµ denote the number of positive maxima, negative maxima,
positive minima, and negative minima of Rµ, respectively. Furthermore, let rµ denote the number
of ν ∈ Rµ such that Rµ is the wedge of Xν . Then as we go around the crossings ν in ∂Rµ, summing
σ(ν, µ), we will get a telescoping sum, except for the fact that there are some wedges, and that at
each ξ, the label value must change by one (because of the δσ(xξ)+1,σ(yξ) terms, and that we are
assuming the state is contributing). Therefore, it can be seen directly that

∑

ν∈Rµ

≡ −pµ + pµ + qµ − qµ − rµ mod N

where the right-hand side counts the number of times ∂Rµ goes around R∗
µ in R2 in the counter-

clockwise direction, so its −1.

To prove Lemma 7.5, first note that (3) follows immediately from the definition of θ and the
assumption that σ is contributing. Furthermore,

∑n
ν=1

∑
µ∈Qν

σ(ν, µ) =
∑n+1

µ=0

∑
ν∈Rµ

σ(ν, µ).
Therefore

n+1∑

µ=0

∑

ν∈Rµ

σ(ν, µ) = n(N − 1)
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But σ(ν, µ) ≥ 0, so by Lemma 7.6,
∑

ν∈Rµ
σ(ν, µ) ≥ N − 1 when µ 0∈ {0, n + 1}, giving us parts (1)

and (2) of Lemma 7.5.

Thus we already see that we have eliminated the contributions from the tetrahedra bordering
the unbounded faces R0 and Rn+1; recall that these tetrahedra degenerate because they contain
edges Ḟn+1 or Ḟ1.

The technical core of the rest of the proof relies on some q-polynomial identities, which are true
when q is an Nth root of unity, as we are assuming. We write i ∈ [j, k] to indicate that qj , qi, and
qk go clockwise around the unit circle, i.e. [i− k] + [k − j] = [i− j].

We have

Lemma 7.7.
∑

i∈[k,j]

q−iS̄ij
kl = δj,kq

1−l,
∑

j∈[i,l]

q−jSij
kl = δi,lq

−1−k,
∑

k∈[l,i]

qkS̄ij
kl = δi+1,lq

j ,
∑

l∈[j,k]

qlSij
kl = δj,k+1q

i

and

Lemma 7.8.
∑

i∈[k,j]

q−iSij
kl =

−Nq−1−k

(q̄)[j−l](q)[l−k−1]
,

∑

j∈[i,l]

q−jS̄ij
kl =

−Nq1−l

(q̄)[l−k−1](q)[k−i]
,

∑

k∈[j,l]

qkSij
kl =

−Nq−1+i

(q)[i−j](q̄)[j−l]
,

∑

l∈[k,i]

qlS̄ij
kl =

−Nq1+j

(q̄)[i−j](q)[k−i]
.

The proofs can be found in [29] and [17].
Recall that γ denotes the “broken arc” of D, connecting Xa and Xb through p (we may assume

γ contains no maxima or minima), and that Nγ := N1 ∪ {Xa, Xb} ∪N 0 denotes the crossings in γ.
Furthermore, let Eγ

D denote the edges of D which are contained in γ; E0
G denotes the edges of D

which border R0 ∪Rn+1.
For this next part, we will reference Figure 32 for clarity, but it will be obvious that our claims

are completely general. We will refer to the edges of Figure 32 by their vertices, e.g., the broken
edge from X1 to X8 is ε1,8.

Suppose a state σ is contributing. By assumption, its value on ε1,8 is 0, and by Lemma 7.5,
σ(1, 0) = [σ(ε1,8) − σ(ε1,9)] = 0. Therefore we must have σ(ε1,9) = 0. We can then continue on in
this fashion around the boundary of the knot, i.e., in general, the values of σ on E0

D do no depend
on σ. Specifically, we have σ(e1) = σ(h1) = 0, σ(fn) = 0, and σ(gn) = −sgn(n). Plugging these in,
we obtain

〈D|σ〉1 =
Nq−sgn(1)/2−σ(g1)

(
qsgn(1)

)
sgn(1)σ(g1)

(
q−sgn(1)

)
−sgn(1)σ(g1)−1

= q−sgn(1)/2−σ(g1) (35)

〈D|σ〉n =
Nq−sgn(n)/2+σ(en)

(
q−sgn(n)

)
sgn(n)σ(en)

(
qsgn(n)

)
−sgn(n)σ(en)−1

= q−sgn(n)/2+σ(en) (36)

(in fact, note that σ(en) and σ(g1) are determined as well, though this will not be needed).
Now, let Ψσ be the set of states which agree with σ, except on the broken arc γ, i.e.

Ψσ = {ρ ∈ Ψ̇|ρ(ε) = σ(ε) if ε 0⊂ Eγ
D}

66



Figure 32:

Let us consider the sum ∑

ρ∈Ψσ

∏

ν∈γ

〈D|ρ〉ν

In our example this is ∑

ρ∈Ψσ

〈D|ρ〉1 〈D|ρ〉2 〈D|ρ〉3 〈D|ρ〉7 〈D|ρ〉8 (37)

We have already calculated 〈D|ρ〉1 = q−sgn(1)/2q−ρ(g1). Then we have g1 = ε1,2 = f2 (both crossings
X1 and X2 are positive). Thus the term

∑
q−ρ(g1) 〈D|ρ〉2 =

∑
q−ρ(f2)Sρ(e2)ρ(f2)

ρ(g2)ρ(h2) (38)

is one of the sums from Lemma 7.7 (the second, to be precise) (recall that ρ(e2 = ε2,5) and
ρ(h2 = ε2,6) are fixed, as the states we’re summing over all agree off of γ). Furthermore, contributing
states all have ρ(f2) ∈ [ρ(e2), ρ(h2)] anyway, so (38) becomes δρ(e2),ρ(h2)q

−1−ρ(h2) by Lemma 7.7. If
there were any more crossings on γ between p and Xa, we would be able to repeat this previous
computation exactly; the process stops at Xa. We then do the same thing in the other direction,
stopping at Xb. In general, we get the expression

∑

ρ∈Ψσ

∏

ν∈Nγ

〈D|ρ〉ν =




∑

ρ(ea)∈G

〈D|ρ〉a · q
−ρ(ea)

∏

ν∈N1

q−sgn(ν)/2δσ(eν),σ(hν)



 (39)

×




∑

ρ(gb)∈G

〈D|ρ〉b · q
−ρ(gb)

∏

ν∈N0

q−sgn(ν)/2δσ(fν),σ(gν)+sgn(ν)



 (40)
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which, using Lemma 7.8 and (34), becomes

Nq−sgn(a)/2−σ(ga)
∏

µ∈N &
a

1(
qsgn(a,µ)

)
sgn(a,µ)σ(a,µ)

·
∏

ν∈N1

q−sgn(ν)/2δσ(eν),σ(hν) (41)

× Nq−sgn(b)/2−σ(eb)
∏

µ∈N &
b

1(
qsgn(b,µ)

)
sgn(b,µ)σ(b,µ)

·
∏

ν∈N0

q−sgn(ν)/2δσ(fν),σ(gν)+sgn(ν) (42)

Call a contributing state σ a weight if σ(ε) = 0 for ε ∈ Eγ
D − {Xa, Xb}, and if

∏

ν∈N1

δσ(eν),σ(hν)

∏

ν∈N0

δσ(fν),σ(gν)+sgn(ν) 0= 0

Let Ω be the set of weights of D. Then we have

Theorem 7.8. F ′
N−1(L) can be written as

±Nn−2
∏

ξ∈X

∏

ν∈N
q−sgn(ν)/2

∑

σ∈Ω

∏

ν∈N



qσ(eν)−σ(gν)
∏

µ∈N &
ν

1(
qsgn(ν,µ)

)
sgn(ν,µ)σ(ν,µ)





Proof. We have

∑

σ∈Ψ̇

∏

ν∈N
〈D|σ〉ν =

∑

σ∈Ω

∑

ρ∈Ψ̇σ

∏

ν∈N
〈D|σ〉ν =

∑

σ∈Ω




∏

ν ,∈Nγ

〈D|σ〉ν ·
∑

ρ∈Ψ̇σ

∏

ν∈Nγ

〈D|ρ〉ν





So the theorem follows from (34) and (41).

The sum from Theorem 7.8 contains only the quantum factorials corresponding to non-degenerating
tetrahedra, and so this proves Theorem 7.1.
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