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MAHALANOBIS MATCHING AND EQUAL PERCENT BIAS
REDUCTION

SETH NEEL

Abstract. Section 1 comprises a literature review, which introduces the reader
to Mahalanobis Matching and the Rubin causal framework, summarizes key papers
on a�nely invariant matching methods, and introduces results which will be used
later in the thesis. Section 2.1 computes a new approximation for the expected
bias after exact matching with one binary covariate. Section 3.1 reviews work on
conditionally a�nely invariant matching methods from [RT92a]. In Section 3.2,
under the assumptions for conditionally a�nely invariant matching, we write the
bias reduction in a novel form, and give an interpretation for how quickly the
matching approaches equal percent bias reduction (EPBR). In Section 4 we look
at the probability that additional special covariates do not a↵ect the matching.
We compute an asymptotic lower bound for this probability, in the case when
these additional covariates are bounded. Section 5 contains simulation results
illustrating the approximation in Section 2, the asymptotic bound in Section 4, and
the performance of Mahalanobis matching on ellipsoidal and discrete covariates.
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1. Background

1.1. Estimating Treatment E↵ect in Observational Studies. In practice, due

to political, temporal, or moral reasons, many experimental studies are not ran-

domized. When the treatment assignment mechanism is not random, naturally

covariates cannot be assumed to have the same distribution in the treatment and

control groups. Because the treatment e↵ect typically depends on the observed

covariates, naively taking the di↵erence in sample means between treatment and

control outcomes will produce biased estimates. The development of methods to

adjust for said bias and to accurately estimate causal e↵ects is paramount to the

application of statistics in fields like medicine and social science, and is a major

theme in econometrics [Zha04]. In studies with a randomized treatment assignment

mechanism both observed and latent covariates are equally distributed in treatment

and control groups; thus taking the di↵erence in average treatment e↵ect provides

an unbiased estimate of treatment e↵ect. By “treatment e↵ect” we mean r1 � r0

in the Rubin causal framework, where we assume that every unit has a single set

of potential treatment and untreated outcomes (r0, r1). This is called the stable

unit-treatment value assumption [Rub80b]; in particular it dictates that there is

no interaction in the treatment e↵ects between units. While this is sometimes not

the case, as in systems where units are competing, it can often be addressed in

observational studies through design [Stu10]. Because in any experiment a unit is

either treated or untreated, (r0, r1) is never fully observed, and hence estimating the

treatment e↵ect r1� r0 is actually a missing data problem [Rub76a]. The technique

of matching attempts to solve this missing data problem by estimating unobserved

outcomes using the outcomes for units that are as similar as possible. If we let Z
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denote the indicator of treatment, then in this setting:

E(robs1 |z = 1)� E(robs0 |z = 0) 6= E(r1)� E(r0)

The righthand quantity is what we typically want to estimate, the average treatment

e↵ect on the treated (ATT), and is the quantity of concern in this thesis. If we

assume that (r0, r1) ?? Z|X, then, since in randomized studies Z ?? X, we have:

E(r1|z = 1)�E(r0|z = 0) = E
x

(E(r1|z = 1, x)|z = 1)�E
x

(E(r0|z = 0, x)|z = 0) =

E
x

E(r1|x, z = 1)� E
x

E(r0|x, z = 0) = E
x

E(r1|x)� E
x

E(r0|x) = E(r1)� E(r0),

and thus the ATT is an unbiased estimator for E(r1)�E(r0) in randomized studies,

assuming (r0, r1) ?? Z|X. The last assumption, along with the assumption that for

each value of the covariates there is a chance the unit will receive treatment, is called

ignorability, and it is discussed in the context of propensity scores in Section 1.2.

Matching methods subsample or match to improve covariate balance in the treat-

ment and control groups and mimic the e↵ect of randomization, and consequently

reduce bias in the estimation of treatment e↵ect.

Matching methods have been applied since the 1940’s, but began receiving a

rigorous treatment only in the early 1970’s [Stu10]. It is important to note that

matching methods do not take into account outcome variables, and thus they nec-

essarily preclude selection bias on the part of the researcher trying to obtain certain

results. Modern matching methods include exact matching on the covariates, coars-

ened exact matching, matching on estimated propensity scores via logistic regres-

sion, nearest-neighbor Mahalanobis metric matching, and Mahalanobis matching

within propensity score calipers [Stu10]. Clearly, finding an exact covariate match

for a given treated unit is preferable if possible, but this is often not the case. Exact
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matching su↵ers from the aptly termed “curse of dimensionality,” where as the num-

ber of covariates grows the matching must match on all variables simultaneously,

and thus performs increasingly poorly. A large step forward came with the introduc-

tion of the propensity score in [RR83], which addresses this problem by producing a

scalar summary of each covariate that, upon matching, gives an unbiased estimate of

treatment e↵ect assuming ignorability. We highlight the propensity score in Section

1.2.

Both propensity score and Mahalanobis matching share the property of being

a�nely invariant, which means that the matching is preserved under any full rank

transformation of the covariates in the treatment and control groups. This is a

virtue; we want our matching to be robust whether temperature is reported in

Fahrenheit or Celsius, height in centimeters or inches, etc. Pivotal work on a�nely

invariant matching methods is given in [RT92a] and [RS06]. In [RT92a], a�nely

invariant matching methods for proportionally ellipsoidal distributions are shown to

be equal percent bias reducing (EPBR), and formulas for the variance and second

moments of a linear combination of the covariates after the matching are given.

Multivariate normal and multivariate t-distributions are examples of ellipsoidally

symmetric distributions that are often encountered in hypothesis testing. In [RS06],

most of the results in [RT92a] are extended to discriminant mix of proportionally

ellipsoidally symmetric distributions (DMPES), a generalization of ellipsoidal dis-

tributions. Mahalanobis distance and ellipsoidal distributions are introduced in

Section 1.3, and equal percent bias reduction is introduced in Section 1.4. The re-

view of material in [RT92a] most relevant to the thesis is postponed until Section

3.1, where it complements new work in Section 3.2. Section 1.5 summarizes the

main contributions of this thesis.
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1.2. Propensity Score Matching. We follow along with [RR83] in introducing

the propensity score, and explaining its pivotal properties in analysis of observa-

tional studies. We then summarize work in [RT92b] on linear propensity score

matching with normal covariates, and discuss an extension of the technique pre-

sented in [RT00]. Remember that in this thesis we are not primarily concerned

with propensity scores. Nevertheless we feel that it is too important a subject in

matching methods to not give it at least a cursory treatment.

Definition 1. The propensity score is the probability a given unit received the treat-

ment assignment: e(x) = P(z = 1|x).

Note that in non-randomized studies we do not know the treatment assignment

mechanism, and hence in practice e(x) must be estimated, but we disregard this

concern for now. We show that if we assume strongly ignorable treatment assign-

ment, at a given level of the propensity score taking the di↵erence in treatment and

control outcomes is an unbiased estimate of the treatment e↵ect. This property is

in a sense universal to the propensity score, as it is the coarsest score for which it

holds. Setting up this statement formally requires us to define a related concept,

that of the balancing score b(x).

Definition 2. A balancing score is a function of x such that x ?? z|b(x).

This says that, conditional on a balancing score b(x), the distribution of x in the

treatment and control distributions is the same. Note that trivially any one-to-one

function of x is a balancing score since from it we can recover the exact value of

x. The propensity score e(x) is a balancing score, and in particular Rubin and

Rosenbaum show that for any balancing score b(x) there exists a function h such

that h(b(x)) = e(x); hence e(x) is the coarsest balancing score. We follow Section 2

in [RR83] and prove:
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• e(x) is the coarsest balancing score

• Conditioning on a level of the balancing score, the average di↵erence between

treatment and control means is an unbiased estimator for the treatment

e↵ect.

Theorem 1.1. [RR83] Let b(x) be a function of x. Then b(x) is a balancing score

if and only if there exists f such that f(b(x)) = e(x).

Proof. Suppose that b(x) is a balancing score, but no such function f exists. Then

necessarily there are m,n such that b(m) = b(n), but e(m) 6= e(n), which implies

that P(z = 1|m) 6= P(z = 1|n). It follows that b(x) is not a balancing score

because, conditional on the value of b(m) = b(n), Z is not independent of the

vectors m,n, which is a contradiction. Conversely, suppose that there exists f such

that f(b(x)) = e(x). We want to show that P(z = 1|b(x)) = P (z = 1|x) = e(x).

But P(z = 1|b(x)) = E(Z|b(x)) and e(x) = E(Z|x). Then, by the law of iterated

expectation, P(z = 1|b(x)) = E(Z|b(x)) = E(E(Z|x)|b(x)) = E(e(x)|b(x)) = e(x),

where the last equality follows since e(x) is a function of b(x). Hence any finer score

than e(x), and in particular e(x) itself, is a balancing score. ⇤

This theorem is significant because it tells us that, if we match on e(x), we can

include other functions of x into the score and still maintain the property of being

a balancing score [RR83]. We now show that if the treatment e↵ect is strongly

ignorable, given x, then it is strongly ignorable given any balancing score.

Theorem 1.2. [RR83] Suppose that (r1, r0) ?? z|x, and 8x, 0 < P(z = 1|x) < 1.

Then (r1, r0) ?? z|b(x), and 8x, 0 < P(z = 1|b(x)) < 1.

Proof. We again follow [RR83]. We want to show that, given P(z = 1|(r1, r0), x) =

p(z = 1|x), that P(z = 1|(r1, r0), b(x)) = P(z = 1|b(x)).Note that e(x) = f(b(x)) =)



8 SETH NEEL

P(z = 1|b(x)) = e(x). Hence we want to show that P(z = 1|(r1, r0), b(x)) = e(x).

Again, by the law of iterated expectation, P(z = 1|(r1, r0), b(x)) = E(Z|r1, r0, b(x)) =

E
x

(E(Z|r1, r0, x)|{r1, r0, b(x)}), which by ignorability is equal to E
x

(E(Z|x)|{r1, r0, b(x)}) =

E(e(x)|(r0, r1), b(x)) = e(x), as desired, since knowing b(x) means we know e(x) by

Theorem 1.1. ⇤

The theorem tells us if the treatment e↵ect is strongly ignorable given x then

matching on balancing score gives us an unbiased estimate of treatment e↵ect since

(r0, r1)|b(x) ?? Z =) E(r1|b(x), z = 1)�E(r0|b(x), z) = E(r1|b(x))�E(r0|b(x)), as

desired. This in turn allows us to use the law of total probability to compute the

ATT:

E(r1�r0) = E
b(x)(E(r1�r0|b(x))) = E

b(x)(E(r1|z = 1, b(x)))�E
b(x)(E(r0|z = 0, b(x))),

i.e., if we can match on b(x) and compute the sample di↵erence in matched treat-

ment and control means, we obtain an unbiased estimate of the ATT. We have now

established the key property of matching on propensity scores, so we conclude our

review with some remarks on matching on propensity scores in practice, and by

briefly summarizing work in the area. Recall that since we do not know the treat-

ment assignment mechanism, when dealing with actual data e(x) must be modeled,

typically by logistic regression. Then matching is done on these estimated propen-

sity scores ê(x), or on a transformation logit(ê(x)), the estimated linear propensity

score. As the sample sizes N
t

, N
c

increase, ê(x) will become a better estimate of the

true propensity score e(x). In [RT92b], Rubin and Thomas compute an analytic

approximation for the expected bias reduction when matching on estimated linear

propensity scores for normal distributions, and go on in [RT96] to show that these

approximations hold well even when the data deviates strongly from normality. In

[RT00] Rubin and Thomas compute approximations for the matched distributions
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when combining propensity score matching with exact matching on special “prog-

nostic” covariates, and show that this hybrid approach is more e↵ective at reducing

bias than matching on prognostic covariates or propensity scores alone.

1.3. Mahalanobis Matching and Ellipsoidal Distributions. In 1936 P.C. Ma-

halanobis, founder of the Indian Statistical Institute, introduced the Mahalanobis

distance. Mahalanobis distance is a measure of how far a point x is from a distri-

bution F , and it is a multivariate generalization of how many standard deviations

a univariate point is from the mean µ of F . In one dimension this is x�µ

�

, and in n

dimensions the Mahalanobis distanceM is defined asM2 = (x�µ)0⌃�1(x�µ) where

⌃ is the covariance matrix of F . One immediately notices that the quantity M2

appears in the probability density function of the multivariate normal distribution,

and in fact if X ⇠ N (µ,⌃), then f
x

= c · e� 1
2M

2
. This relationship to the normal

is why Mahalanobis distance is ubiquitous in statistics; for example the reader may

recognize it from the decision boundary for linear discriminant analysis (LDA) in

classification. It also is the basis of the intuition behind defining Mahalanobis dis-

tance: the distance treats points equally that lie on the same level set of the ellipse

(x� µ)0⌃�1
c

(x� µ), or in the case of an ellipsoidal distribution like the multivariate

normal, have the same density. An ellipsoidal distribution with mean µ and covari-

ance matrix ⌃ has density function (if it exists) equal to k · g((x � µ)0⌃�1(x � µ))

where g is any function mapping R�0 ! R�0 that defines a valid probability den-

sity function. Alternatively an ellipsoidal distribution is one such that there exists

a linear transformation of the coordinates such that the transformed distribution

is spherically symmetric [Dem69]. Spherically symmetric distributions are invari-

ant under orthogonal transformations of their coordinate systems, for example, the

standard multivariate normal distribution. In [RT92a], Rubin and Thomas define
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proportionally ellipsoidal distributions, which are simply pairs of ellipsoidal distri-

butions whose covariance matrices are proportional. As we will see in Section 1.4,

these proportional ellipsoidal distributions have a special role to play in matching,

and so here we prove a canonical form that was utilized in [RT92a], and had been

cited in the literature previously.

Theorem 1.3. [Canonical Form] Let X
t

, X
c

be proportionally ellipsoidal distribu-

tions with means µ
t

, µ
c

and covariance matrices ⌃
t

/ ⌃
c

. Then there exists an a�ne

transformation A such that, in the transformed distributions AX
t

, AX
c

, we have:

• µ0
t

/ (1, . . . , 1)

• µ0
c

= 0

• ⌃0
t

= �2I

• ⌃00
c

= I

Proof. A�ne transformations are simply compositions of scalar translations and lin-

ear transformations. First subtract µ
c

from both distributions. Let U be a matrix

such that U⌃
c

U 0 = I, where we obtain U by taking the Cholesky decomposition

of ⌃�1
c

. Then multiplying by U our new distributions are U(X
t

� µ
c

), U(X
c

�

µ
c

). Finally let T be any orthogonal matrix projecting the vector U(µ
t

� µ
c

)

onto the subspace spanned by (1, . . . , 1). Our final transformed distributions are

TU(X
t

� µ
c

), TU(X
t

� µ
c

). Then in these distributions µ0
c

= 0, µ0
t

= TU(µ
t

� µ
c

) /

(1, . . . , 1),⌃0
c

= TU⌃
c

U 0T 0 = TIT 0 = TT 0 = I, and similarly ⌃0
t

/ ⌃0
c

= I. ⇤

In the matching setting, typically a distance measure between treatment and con-

trol units is defined, and then when iterating randomly through the treated units,

control units are subsampled with or without replacement to minimize this distance

measure from the given treated unit. Along with distances based on propensity
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scores, Mahalanobis distances are one of the most common choices of distance mea-

sure. Letting x
t

, x
c

denote treatment and control units respectively, we define the

Mahalanobis distance between a treatment and control unit as
p
(x

t

� x
c

)0S�1(x
t

� x
c

),

where S is either the control covariance matrix ⌃
c

, or the pooled covariance matrix

between the treatment and control groups. When the goal is on estimating the ATT

and we do not subsample the treated units, we take S = ⌃
c

, and so we define the

Mahalanobis distance with respect to ⌃
c

for the rest of this thesis [Stu10].

Previous work on Mahalanobis matching has primarily involved computing Monte

Carlo values for bias reduction with normal distributions and comparing them to

values from other matching methods, or in the context of Mahalanobis matching as

an a�nely invariant matching method (defined in Section 1.4). In [Rub79] Monte

Carlo simulations show that when the response variable Y is a nonlinear function

of the covariates (bivariate X), Mahalanobis matching has superior performance

to matching on the linear discriminant, when combined with regression adjustment.

Regression adjustment for matching just means that instead of estimating the treat-

ment e↵ect by taking the di↵erence in sample means from the matched samples, we

also adjust for the remaining bias in the samples by subtracting � · (X̄
mt

� X̄
mc

),

where � is the regression coe�cient of X in the regression of outcome on covari-

ates. Motivated by the success of Mahalanobis matching in [Rub79], in [Rub80a]

Rubin computes Monte Carlo bias reductions for bivariate normal covariates and

univariate normal covariates with Mahalanobis matching, and compares the values

to the theoretical maximum bias reduction for a�nely invariant matching methods

derived in [Rub76c]. [GR93] studies Mahalanobis matching as one of several match-

ing methods, and reiterates the finding that Mahalanobis matching performs well

relative to discriminant matching and propensity methods when the covariates are
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low-dimensional ([Rub79], [Zha04]), but found that the bias reduction is not opti-

mal when the covariates deviate from normality or the number of dimensions grows

high.

The past work on Mahalanobis matching has centered on how e↵ective Maha-

lanobis matching is at reducing bias in various distributional settings relative to

other matching methods. Beyond proving that Mahalanobis matching is equal per-

cent bias reducing (EPBR) in specific distributional settings, a study of how this

property holds up as covariates deviate from normality and grow in dimension is

lacking. In the next section, we introduce the key concepts of equal percent bias

reduction and a�nely invariant matching methods.

1.4. Equal Percent Bias Reduction. Let X
t

, X
c

denote the treatment and con-

trol distributions, and let µ
t

, µ
c

respectively be their finite means. Now let µ
mt

, µ
mc

denote the expected sample means of X
t

, X
c

in the matched treatment and matched

control populations.

Definition 3. We say that a matching method is equal percent bias reducing (EPBR)

if there exists a constant � such that µ
t

� µ
c

= �(µ
mt

� µ
mc

).

One might ask: Why do we care if a matching method is EPBR? For example,

it seems intuitive that a matching method which reduced bias in each coordinate

by exactly 5 percent would always be inferior to a matching method that reduced

bias by more than 80 percent in every coordinate, although not by exactly the same

percent in every coordinate. Now suppose that we know our outcome variable is

a linear function of our covariates, but we are not confident which linear function

in particular it is. Then, as is remarked upon (but not proven) in [Rub76b], if a

matching method reduces bias in every coordinate but is not EPBR, then there
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exists a linear outcome direction �0X in which the matching increases bias by an

arbitrarily large percent. We give a short proof below.

Proof. Suppose that µ
t

� µ
c

6= �(µ
mt

� µ
mc

). Then 9�0 such that �0 · (µ
t

� µ
c

) = 0,

but �0 · (µ
mt

� µ
mc

) 6= 0. This is clear since (µ
t

�mu
c

)? 6= (µ
mt

� µ
mc

)? and they

are the same dimension. But then the matching has created bias when there was

initially no bias, which corresponds to increasing bias by an infinite amount. ⇤

Because we are guaranteed to avoid situations like this in matching settings that

are EBPR, a substantial number of papers have dealt with methods and distri-

butional assumptions in which the EPBR property can be proven. In [Rub76b]

Rubin considers eleven distributional assumptions, and in each case describes corre-

sponding matching methods which are EPBR. In a related paper of the same year,

Rubin computes the maximum attainable percent bias reduction given fixed sample

sizes and multivariate distributions under EPBR matching methods [Rub76c]. In

[Rub76b], Rubin introduces the notion of an exchangeable matching method, which

is one whose rules are invariant under permutations of the indices of the matching

variables. For these matching methods, multiplying the treatment and control data

matrices by the same permutation matrix does not change which control indices

were selected by the matching. In [RT92a], Rubin and Thomas extend this defini-

tion to a�nely invariant matching methods. Let (X
t

,X
c

) denote the treatment and

control data matrices with each column representing a unit, and (T,C) denote the

treatment and control indices selected by the matching method. Note that if we do

not subsample the treated units then T is just the set {1, . . . , N
t

}.

Definition 4. [RT92a] Let A be any a�ne transformation. An a�nely invariant

matching method m is one such that if (X
t

,X
c

)
m

=) (T,C), then (AX
t

, AX
c

)
m

=) (T,C).
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This is an instructive definition, since as it turns out that many common match-

ing methods are a�nely invariant. The most important of these are Mahalanobis

matching, discriminant matching, and matching on estimated propensity scores us-

ing logistic regression.

Lemma 1.4. Mahalanobis matching is a�nely invariant.

Proof. Suppose that we are not subsampling on the treated units, and so we use ⌃�1
c

in our inner product. The same proof goes forward when using the pooled covariance

matrix. Then, if we multiply our covariates by the linear transformation A, our new

covariance matrix in the control units is ⌃0
c

= A⌃
c

AT . Let x
t

, x
c

be treatment and

control units respectively. If we multiply our data matrices by A, then x
t

, x
c

become

Ax
t

, Ax
c

. The Mahalanobis distance between these two units with respect to ⌃0
c

is
p

(Ax
t

� Ax
c

)0(A⌃
c

AT )�1(Ax
t

� Ax
c

) =
p

(x
t

� x
c

)0AT ((AT )�1⌃�1
c

A�1)A(x
t

� x
c

) =
p

(x
t

� x
c

)0⌃�1
c

(x
t

� x
c

). Then, since the pairwise distance between units is invari-

ant under any linear transformation A, and it is clearly invariant under any scalar

translation since these do not change the covariance matrix, the distance is invariant

under any a�ne transformation. We are matching on exactly this pairwise distance,

and so the selected indices will be invariant as well. ⇤

In [Rub76b] the theorem labeled Case 9 states that when a matching method is

exchangeable, if X
t

, X
c

are exchangeably distributed, then the matching method is

EPBR. This is obvious since symmetry of the distribution and matching method

force µ
t

, µ
c

, µ
mt

, µ
mc

/ (1, . . . , 1), and hence µ
t

� µ
c

/ (µ
mt

� µ
mc

). Then it is

clear that, given an a�nely invariant matching method, if X
t

, X
c

are proportionally

ellipsoidal we can assume the exchangeable canonical form defined in Section 1.3

without changing the matching. Hence by this earlier work we know that a�nely

invariant matching methods on proportional ellipsoidal distributions must be EPBR.
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In [RT92a], Rubin and Thomas derive a sharpened version of this result, giving an

expression for the bias reduction. Their technique also enables them to obtain results

decomposing the variance of matched linear outcome variables. In the second part

of their paper they generalize their results to the case when X
t

, X
c

are composed of

s special covariates and r covariates whose conditional distribution on the special

covariates is ellipsoidal. Discussion of their results in the general case is postponed

until Section 3.1 of the thesis. In [RS06] the theorems in [RT92a] are extended to

DMPES distributions. DMPES distributions are mixtures of ellipsoidally symmetric

distributions, where each component covariance matrix is proportional, and the best

linear discriminant between any two components is proportional. The results in

[RS06]are in the vein of [RT92a], in that a canonical exchangeable form of DMPES

is assumed, and linear outcome variables are decomposed along and orthogonal to

the best linear discriminant. The idea for this thesis was a suggestion from Donald

Rubin to Natesh Pillai, wondering if the result on equal percent bias reduction

obtained for the distributional settings in [RT92a] and [RS06] could be extended to

the case when some of the covariates are discrete.

1.5. Results. Simulation results in Section 5 indicate that Mahalanobis matching

on discrete covariates, and on combinations of ellipsoidal and discrete covariates

does not have the EPBR property. However, simulated and theoretical results also

show that there are situations in which Mahalanobis matching is very close to equal

percent bias reducing. In light of these findings, the original contributions of this

thesis branch out along three di↵erent paths:

• A precise asymptotic calculation for the expected matched bias under exact

matching on one binary covariate (Section 2, Section 5.5)
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• Characterizations of how quickly matching with ellipsoidal and discrete co-

variates approaches EPBR (Section 3 Corollaries 3.4, 3.5, Lemma 3.6, Sec-

tions 5.1, 5.2, 5.3)

• Introduction of a new measure which we call principality, which measures the

probability that in a combination of discrete and ellipsoidal covariates the

discrete covariates a↵ect which control units are subsampled. An asymptotic

lower bound for this probability is obtained, in the case when additional

covariates are bounded. This result has applications to the EBPR context,

and also to the situation in which latent covariates are present, but which

we do not consider here (Section 4, Section 5.4).

Although perhaps the above results would not typically be organized into the same

paper (particularly Section 2), in this thesis it is the author’s intention to present all

of the original work completed during the 2014� 2015 academic year, all motivated

by the same initial conjecture concerning Mahalanobis matching. We also note that

the Matching package in R can handle Mahalanobis and propensity score matching,

but given the need to experiment with many di↵erent matching settings the author

produced original code for all of the simulations. This code is attached after the

References section.

2. Baby Steps with Binaries

We derive an approximation for the matched bias after exact matching without

replacement on one binary covariate, which holds for large samples. In particular,

we compute E(B̄
mt

� B̄
mc

), where B
c

, B
t

are Bernoulli random variables, and m

denotes exact matching. This amounts to computing E(B̄
mc

) since we do not sub-

sample the treated units. Let B
t

⇠ Bern(p1), Bc

⇠ Bern(p2). The Mahalanobis

distance between two Bernoulli random variables is 1
p2(1�p2)

(b
t

�b
c

)2 = 1
p2(1�p2)

I
bt=bc .
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Hence in the matching either the treated unit will find an exact match, or it will se-

lect a control unit at random as a match. So with one binary covariate, Mahalanobis

matching is just exact matching. This is now a combinatorics problem, and we calcu-

late E(X̄
mc

) = 1
Nt
E(

P
x
mc

), or at least a very close approximation. Let X
mc

denote
P

x
mc

, X
t

denote
P

x
t

, andX
c

be defined similarly. Then E(X
mc

) = E(E(X
mc

|X
t

)).

First we calculate E(X
mc

|X
t

). If X
t

 X
c

 N
c

�N
t

+X
t

then X
mc

= X
t

, if X
t

> X
c

then X
mc

= X
c

, and if X
c

> N
c

� N
t

+ X
t

then X
mc

= N
t

� N
c

+ X
c

. So, by the

law of conditional expectation,

E(X
mc

|X
t

) = P(X
t

 X
c

 N
c

�N
t

+X
t

)X
t

+ P(X
t

> X
c

)E(X
c

|X
c

< X
t

)

+ P(X
c

> N
c

�N
t

+X
t

)E(N
c

�N
t

+X
c

|X
c

> N
c

�N
t

+X
t

).

Since N
c

and N
t

are large, and the treatment and control units are i.i.d, we can

use the Central Limit Theorem to approximate X
t

, X
c

; let X
t

⇠ N(µ
t

, �2
t

), X
c

⇠

N(µ
c

, �2
c

), where µ
t

= p
t

·N
t

, µ
c

= p
c

·N
c

, �2
t

= p
t

(1� p
t

) ·N
t

, �2
c

= p
c

(1� p
c

) ·N
c

.

Let � be the probability density function of the standard normal, and � be the

cumulative distribution function of the standard normal. Then we can approximate

this conditional expectation as

E(X
mc

|X
t

) = �(
X

t

� µ
c

�
c

)E(X
c

|X
t

> X
c

)+(�(
X

t

+N
c

�N
t

� µ
c

�
c

)��(
X

t

� µ
c

�
c

))X
t

+ (1� �(
X

t

+N
c

�N
t

� µ
c

�
c

))(N
c

�N
t

+ E(X
c

|X
c

> N
c

�N
t

+X
t

)).

The expectation of a normal distribution X ⇠ N(µ, �) in the upper tail is

E(X|X > a) = µ+ � · �((a� µ)/�)

1� �((a� µ)/�)
,
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and the expectation of a normal distribution truncated in the lower tail is

E(X|X < a) = µ� � · �((a� µ)/�)

�((a� µ)/�)
.

Then our conditional expectation becomes

(1)
E(X

mc

|X
t

) = µ
c

�(
X

t

� µ
c

�
c

) + (�(
X

t

+N
c

�N
t

� µ
c

�
c

)� �(
X

t

� µ
c

�
c

))X
t

+ µ
c

(1� �(
X

t

+N
c

�N
t

� µ
c

�
c

)).

Let a = �t
�c
, b = µc�µt

�c
, b0 = µc�µt+Nt�Nc

�c
. Rewriting (1) we obtain:

(2) E(X
mc

) = µ
c

E(�(aZ � b)) + �
t

E(�(aZ � b0)Z) + µ
t

E(�(aZ � b0))
� �

t

E(�(aZ � b)Z)� µ
t

E(�(aZ � b))� µ
c

· (E(�(aZ � b0))) + µ
c

.

To take the expectation with respect to X
t

of the right-hand side in (2), we need

to compute integrals of the form

Z 1

�1
z�(az � b)�(z)dz, and

Z 1

�1
�(az � b)�(z)dz.

Both integrals have known closed forms which enable us to compute the exact bias

after matching. We leave these manipulations to the first section of the Appendix.

We substitute in the expressions:

Z
z�(az � b)�(z)dz = �(

�bp
1 + a2

)
ap

a2 + 1
,

and Z 1

�1
�(az � b)�(z)dz = �(

�bp
1 + a2

),

obtaining Theorem 2.1.

Theorem 2.1. Suppose that X
t

⇠ Bern(p
t

), X
c

⇠ Bern(p
c

), with N
t

, N
c

treatment

and control units respectively. Let µ
t

= N
t

· p
t

, µ
c

= N
c

· p
c

, �
t

= N
t

· p
t

(1� p
t

), �
c

=



MAHALANOBIS MATCHING AND EQUAL PERCENT BIAS REDUCTION 19

N
c

· p
c

(1� p
c

), a = �t
�c
, b = µc�µt

�c
, b0 = µc�µt+Nt�Nc

�c
. Then by the above calculations,

E(X̄
mt

� X̄
mc

) ⇡ p
t

� 1

N
t

((µ
c

� µ
t

) · [�( �bp
1 + a2

)� �(
�b0p
1 + a2

)]+

a�
tp

1 + a2
· [�( �b0p

1 + a2
)� �(

�bp
1 + a2

)] + µ
c

).

Simulations illustrating this approximation appear in Section 5.5. Note that when

N
t

= N
c

the matched control units are just randomly sampled control units, and

hence the expected matched bias should be p
t

� p
c

; indeed letting N
t

= N
c

in

our approximation returns p
t

� p
c

. To get from the expected matched bias to the

expected bias reduction simply divide by p
t

� p
c

. Finally, note that our expression

for matched bias is a function of only µ
t

� µ
c

, N
t

, �
t

, �
c

and N
c

, as opposed to p
t

, p
c

(this is clear since taking the µ
c

out of the parentheses we get p
t

� µc

Nt
= µt�µc

Nt
).

3. Mahalanobis Matching with Proportional Ellipsoidal

Distributions and Additional Covariates

3.1. Review. We summarize the work in [RT92a] on conditionally a�nely invari-

ant matching methods, and then describe how it applies to Mahalanobis match-

ing. We follow [RT92a] in our exposition. Suppose our covariates are partitioned

into (X(s), X(r)). A conditionally a�nely invariant matching method with respect to

(X(s), X(r)) is defined by the property that if ((X (s)
t

,X (r)
t

), (X (s)
c

,X (r)
c

))
m

=) (T,C),

then for any a�ne transformation A, ((X (s)
t

,AX (r)
t

), (X (s)
c

,AX (r)
c

))
m

=) (T,C), where

(T,C) are the treatment and control indices selected by the matching applied to the

data matrices X . Correspondingly, we define proportionally conditionally ellipsoidal

distributions ((X (s)
t

,X (r)
t

), (X (s)
c

,X (r)
c

)) such that:

• X(r)|X(s) is ellipsoidally distributed with conditional mean a linear function

of X(s) and constant conditional covariance matrix



20 SETH NEEL

• ⌃(r|s)
t

/ ⌃(r|s)
c

• For each i, the linear regression of X(r)
i

on X(s) is the same in the treatment

and control groups.

Given these assumptions, in conjunction with a conditionally a�nely invariant

matching method, we can assume a canonical form for the distributions where

• ⌃
t

=

2

4 ⌃(s)
t

0

0 �2I

3

5

• ⌃
c

=

2

4 ⌃(s)
c

0

0 I

3

5

• µ
(r)
c

/ 1, µ(r)
t

= 0.

This canonical form follows from the one for proportionally ellipsoidal distributions

with a small trick. First apply the a�ne transformation X(r) = X(r)�BX(s), where

B is the regression of each component of X(r) on X(s), so that now X(r) is uncor-

related with X(s) in both the treatment and control populations. Then transform

the uncorrelated components. From this point forward, assume this canonical form.

Represent an arbitrary linear combination Y as Y = ⇢Z + (
p

1� ⇢2)W where Z

is the standardized projection of Y onto the subspace {X(s), Z}, and Z is the stan-

dardized discriminant uncorrelated with X(s); in our canonical form it is simply

10X(r)/
p
p� s.

Theorem 3.1. [RT92a]

E(Ȳ
mt

� Ȳ
mc

)

E(Ȳ
rt

� Ȳ
rc

)
=

E(Z̄
mt

� Z̄
mc

)

E(Z̄
rt

� Z̄
rc

)
.

Proof. Using the representation Y = ⇢Z+(
p

1� ⇢2)W , we have that E(Ȳ
mt

�Ȳ
mc

) =

⇢E(Z̄
mt

� Z̄
mc

) + (
p

1� ⇢2)E(W̄
mt

� W̄
mc

). We claim that E(W̄
mt

� W̄
mc

) = 0. We

are not subsampling the treated units, hence E(W̄
mt

) = E(W̄
rt

) = 0. Now let W
c

=

�0X
c

= (�(s), �(r))(X(s)
c

, X
(r)
c

)T , then by construction W is orthogonal to {Z,X(s)
c

}
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and in particularX(s)
c

, and hence �(s) = 0. Then E(W̄
mt

�W̄
mc

) = �(r)(X̄(r)
mt

�X̄
(r)
mc

) /

�(r)10, since the matching on X(r) is exchangeable, and the joint distribution of

(X(s), X(r)) is exchangeable in X(r) in the treatment and control distributions in the

canonical form. But W ?? Z =) �(r)10 = 0 =) E(W̄
mt

� W̄
mc

) = 0 as desired.

The result follows from the fact that E(W̄
rt

� W̄
rc

) = 0 by construction. ⇤

Corollary 3.2. [RT92a] Specialize to the case when there are no special covariates.

Then if Z = (1, . . . , 1)0X 0,

E(Ȳ
mt

� Ȳ
mc

)

E(Ȳ
rt

� Ȳ
rc

)
=

E(Z̄
mt

� Z̄
mc

)

E(Z̄
rt

� Z̄
rc

)
.

In particular, Z is the same for each outcome direction Y , and so this shows that

the matching is EPBR, with bias given by the reduction in bias along the best linear

discriminant Z. Starting from the decomposition Y = ⇢Z + (
p

1� ⇢2)W , taking

the variance of both sides, and using the same exchangeability tricks used to prove

Theorem 3.1, allow [RT92a] to obtain:

Corollary 3.3. [RT92a]

var(Ȳ
mt

� Ȳ
mc

)

var(Ȳ
rt

� Ȳ
rc

)
= ⇢2

var(Z̄
mt

� Z̄
mc

)

var(Z̄
rt

� Z̄
rc

)
+ (1� ⇢2)

var(W̄
mt

� W̄
mc

)

var(W̄
rt

� W̄
rc

)
.

The variable W is the component of Y uncorrelated with Z, and has the same

distribution for all Y ; hence the above corollary shows that the reduction in variance

after matching varies only with the correlation ⇢ between Y and Z. Based on the

work in [RT92a], Corollary 3.4 naturally follows:

Corollary 3.4. Let Y = {�0X| ⇢
Y X

(s) = 0
s

}, then matching restricted to Y 2 Y is

EPBR.
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Proof. Recall that Z is the projection of Y onto {Z,X(s)}, hence if Y 2 X(s)?, then

Proj(X(s)
,Z)Y = Proj

Z

(Y ), which in turn gives:

E(Ȳ
mt

� Ȳ
mc

)

E(Ȳ
rt

� Ȳ
rc

)
=

E(Z̄
mt

� Z̄
mc

)

E(Z̄
rt

� Z̄
rc

)
, which is constant for all Y 2 Y .

⇤

Corollary 3.4 also gives insight into the performance of the matching method when

X(s) is weakly correlated to Y ; as ⇢
X

(s)
Y

! 0
s

, the matching restricted over these

outcome directions will reduce bias approximately equally in each direction.

3.2. Convergence to EPBR. Let (X
t

, X
c

) be proportionally conditionally ellip-

soidal, as in Section 3.1. Then we assume the canonical form, that is, ⌃(r)
t

/

I,⌃(r)
c

= I, µ
(r)
t

/ 1, µ(r)
c

= 0, X(r) ?? X(s). By symmetry it stands that, since the

first p coordinates are jointly exchangeably distributed in the treatment and control

distributions, we have that X̄(p)
mt

, X̄
(p)
mc

/ 1. Then let Y = �0X be a random linear

outcome variable, ||�||= 1, and write

Y (p)

||�(p)|| = Zp · ⇢p
Y

+
q

1� ⇢p
Y

·W
p

where Zp is the standardized best linear discriminant, W is in the orthogonal com-

plement of Zp, and ⇢p
Y

is the correlation of Y (p) with Zp. But then by the same

symmetry arguments in [RT92a] we obtain

(3) E(Ȳ (p)
mt

� Ȳ (p)
mc

) = ⇢p
Y

· E(Z̄p

mt

� Z̄p

mc

) · ||�(p)||,

which implies by the linearity of expectation:

Corollary 3.5.

E(Ȳ
mt

� Ȳ
mc

) = ⇢p
Y

· E(Zp

mt

� Zp

mc

) · ||�(p)||+�(s) · E(X̄(s)
mt

� X̄(s)
mc

).
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Although Corollary 3.5 doesn’t represent a large conceptual leap from Theorem

3.1, this new form is instructive. For a matching to be EPBR means that, for

any linear outcome variable Y = �0X, the ratio of E(Ȳ
mt

� Ȳ
mc

) to E(Ȳ
rt

� Ȳ
rc

) =

�0 · (µ
t

� µ
c

) is constant for all Y . Then as (3) approaches ⇢
Y

·E(Z̄
mt

� Z̄
mc

) and as

E(Ȳ
rt

� Ȳ
rc

) approaches ⇢
Y

· E(Z
rt

� Z
rc

) the matching becomes equal percent bias

reducing. Specifically, E(�(s)) = 0
s

and var(�(s)
i

) ! 0 at the rate O(1
p

) as p ! 1.

So from Corollary 3.5 we gain the intuition that for fixed s the matching should

approach equal percent bias reduction at rate 1
p

. It is also clear that, if the bias in

the special covariates is small relative to the bias in the ellipsoidal covariates, the

matching is approximately EPBR:

E(Ȳ
rt

�Ȳ
rc

) = ⇢p
Y

·E(Zp

rt

�Zp

rc

)·||�(p)||+�(s) ·E(X̄(s)
rt

�X̄(s)
rc

) ⇡ ⇢p
Y

·E(Zp

rt

�Zp

rc

)·||�(p)||,

and assuming

(4) ||E(X̄(s)
mt

� X̄(s)
mc

)||< ||E(X̄(s)
rt

� X̄(s)
rc

)||,

then it follows

E(Ȳ
mt

� Ȳ
mc

) ⇡ ⇢p
Y

· E(Zp

mt

� Zp

mc

) · ||�(p)||) =) E(Ȳ
mt

� Ȳ
mc

)

E(Ȳ
rt

� Ȳ
rc

)
⇡ E(Z̄p

mt

� Z̄
mc

)

E(Z̄p

rt

� Z̄
rc

)
,

as desired. Note that assumption (4) is quite plausible; this is the intuition that

is the basis for matching on Mahalanobis distance in the first place. Below we

prove a related but weaker statement than (4) in the case when matching with

proportional covariance matrices and subsampling with replacement, which holds

for all distributions in the treated and control populations.

Lemma 3.6. Suppose that ⌃
c

/ I, that we do not subsample treated units, and we

subsample the control units with replacement.Then for any distribution of X
t

, X
c

we
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have

||E(X̄
mt

� X̄
mc

)|| E(kX̄
rt

� X̄
rc

k),

with equality if and only if N
c

= 1.

Proof. For simplicity assume that our matching method subsamples the control units

with replacement, so that each matched control unit xj

mc

has the same distribution.

Then

kE(x
mt

� x
mc

)k= kE(x
t

� x
c

| x
t

� x
c

= argmin
j21...Nc

kx
t

� xj

c

k)k

since ⌃
c

/ I implies that matching on Mahalanobis distance is the same as matching

on the Euclidean norm. Let x
t

�x
c

be denoted by y. Then ||y||: Rp ! R is a convex

function, so by Jensen’s inequality:

kE(y|y = argmin
j21...Nc

ky
j

k)k E(kyk|y = argmin
j21...Nc

ky
j

k) =

E(min
j21...Nc ||yj||)  E(||y||),

where the last inequality is strict unless N
c

= 1. But E(kyk) = E(kX̄
rt

� X̄
rc

k), as

desired. ⇤

Lemma 3.6 is not the precise statement that we need (4), but it does lend credence

to the notion that if the initial bias is small in norm, the norm of the matched bias

will also be small. Finally, note that all of the results in this section hold for

any a�nely invariant matching method, including but not limited to Mahalanobis

matching.

4. Principality in Mahalanobis Matching

Suppose that X
t

, X
c

are proportionally conditionally ellipsoidally distributed, and

assume that they have the canonical form given in Section 3.1. Let X
t

and X
c

again
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denote the data matrices consisting of N
t

sampled treated units and N
c

control units

respectively.

Definition 5. We say that a matching is principal in X(s) if (X
t

,X
c

)
m

=) (T,C)

and (X (r)
t

,X (r)
c

)
m

=) (T,C).

That is, applying the matching method to the first r covariates selects the same

matched control units as applying the matching method to the full data matrix. Let

p
I

denote the probability that a given matching is principal in its special covariates,

under Mahalanobis matching and subsampling the control units with replacement.

Then in Section 4.1 we compute an asymptotic lower bound for p
I

in the case

where the X(s) are bounded. We are interested in p
I

because it can give insight into

scenarios when additional covariates a↵ect the matching mechanism in a substantive

way. Specifically, if Y denotes a linear outcome variable, then as p
I

! 1,

E(Ȳ
mt

� Ȳ
mc

) ! ⇢p
Y

· E(Zp

mt

� Zp

mc

) · k�(p)k + �(s) · E(X̄(s)
rt

� X̄(s)
rc

),

since we can assume that X(s), X(r) are uncorrelated in canonical form, and so

matching based on X(r) amounts to subsampling the X(s) randomly. Above, m

denotes Mahalanobis matching on just the first p covariates. Another application

of principality could be to matching in the case when there are latent covariates

that are linearly related to the outcome variable, but are not accounted for in the

matching. Bounding p
I

provides a measure of the extent to which excluding these

variables actually a↵ects the matching [Dylan Small, The Wharton School, personal

communication, 2/25/14].

4.1. A Lower Bound for p
I

. We now obtain an asymptotic bound for p
I

in the

case when the X(s) are bounded, with covariance matrix ⌃(s), and inverse covariance

matrix ⌃(�s). Let I(j) be the indicator variable of the event that the matching on
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the jth treated unit is principal, and let E(I(j)) = p. Then it is clear that, given the

matching on the kth unit is principal, it is more likely that the matching on the jth

unit is principal, since it indicates that the special covariates contributed less to the

Mahalanobis distance. By this reasoning we have the bound p
I

� pNt . So it remains

to obtain an asymptotic lower bound for p, the probability that the matching on

a single unit x
t

is principal. For j 2 1, 2, . . . , N
c

, let ✏(j) = ||x(p)
t

� x
(p)
cj

||2, which is

just the Mahalanobis distance between the first p coordinates of x
t

and unit j in

the control population, since in the canonical form ⌃(p)
c

= I. Let ✏(1) denote the

minimal ✏(j). Then the matching is principal if for all other treated units j, the sum

of ✏(j) and the distance coming from the binary covariates is greater than the sum

of ✏(1) and the distance coming from the binary covariates. Recall that X
(s)
c

, X
(p)
c

are uncorrelated, thus the probability the matching is principal is precisely

P( 8 j, ✏(j) � ✏(1) > (x(s)
(1) � x

(s)
t

)0⌃(�s)
c

(x(s)
(1) � x

(s)
t

)� (x(s)
(j) � x

(s)
t

)0⌃(�s)
c

(x(s)
(j) � x

(s)
t

)

Now suppose (x(s)
(1)�x

(s)
t

)0⌃(�s)
c

(x(s)
(1)�x

(s)
t

)� (x(s)
(j)�x

(s)
t

)0⌃(�s)
c

(x(s)
(j)�x

(s)
t

)  c
s

, then

p � P( 8 j, ✏(j) � ✏(1) > c
s

). This probability is intractable as written, since the

di↵erence in two order statistics of a normal distribution is not well-understood.

However, suppose we approximate ✏(1), the minimum of the ✏(j)’s. It is of course a

random variable, but as N
c

and p get large the variance of ✏(1) approaches 0 at rate

O(1/log(N
c

)), and the random variable converges to its expected value, which we

denote c1 [Pet00]. Then our bound becomes

p � P( 8 j, ✏(j) � ✏(1) > c
s

) ⇡ P( 8 j, ✏(j) > c
s

+ c1|✏(j) > c1)

� P(✏(j) > c
s

+ c1|✏(j) > c1)
Nc�1,

where we have to add the last inequality since the ✏(j) are not independent, they are

conditionally independent given x
t

. Finally note that ✏(j) =
pX

i=1

(xi

t

� xi

c

)2, where
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xi

t

� xi

c

are i.i.d ⇠ N(µ
t

, 1 + �2). For large p we use the central limit theorem to

obtain ✏
j

⇡ N((1 + �2 + µ2
t

)p, (4µ2
t

(�2 + 1) + 2(�2 + 1)2)p) = N(µ̄, �̄2). Thus

P(✏(j) > c
s

+ c1|✏(j) > c1) ⇡
1� �( cs+c1�µ̄

�̄

)

1� �( c1�µ̄

�̄

)
.

It now remains to approximate c1, and to compute an upper bound c
s

. In [Roy82] an

approximation for the first order statistic of N
c

normals with mean µ̄ and variance

�̄2 is given as µ̄+��1( 1�↵

Nc�2↵+1)�̄, with ↵ = 0.375. In [Har61], values of ↵ are given

for n  400 which give an accurate approximation for the first moment of ✏(1) to

within .001. Note that these approximations assume that the ✏(j)’s are independent

when in our case they are positively correlated. To address this, one can obtain

the first moment of correlated normal order statistics via the technique in [OS62].

However, for our purposes it is su�cient to use the approximation assuming the ✏(j)

are independent, since if they are positively correlated that will result in a higher

minimum value ✏(1), and so our lower bound p would still hold. Using the Central

Limit Theorem approximation for ✏(j) we take c1 = µ̄+��1( 1�↵

Nc�2↵+1)�̄, with ↵ given

in [Har61]. Finally we compute an upper bound (x(s)
(j) � x

(s)
t

)0⌃(�s)
c

(x(s)
(j) � x

(s)
t

)  c
s

.

If X(s) is discrete or if each component of X(s) is bounded in absolute value by a

constant k, letting a = (x(s)
(j) � x

(s)
t

) and ⌃ = ⌃(�s)
c

, then

a0⌃a =
X

l,m

a
l

a
m

�
lm

 4k2|
X

lm

(�
lm

)|.

For example, when X(s) consists of Bernoulli random variables, k = 1, and we take

c
s

= |
X

lm

(�
lm

)|. Then

p
I

�
1� �( cs+c1�µ̄

�̄

)

1� �( c1�µ̄

�̄

)

Nt(Nc�1)

,

with µ̄, �̄, c
s

, c1 all defined above. Simplifying we obtain the below theorem.
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Theorem 4.1. Let X
t

, X
c

be conditionally elliposidally proportional, where X(s)

are binary covariates. Define �̄ as above. Let p
I

denote the probability that X(s) is

principal. Then

p
I

� (
1� �(c

s

/�̄ + ��1( 1�↵

Nc�2↵+1))
Nc�↵

Nc�2↵+1

)Nt(Nc�1),

where c
s

= |
X

lm

(�
lm

)|.

Studying the approximation in Theorem 4.1, we obtain a corollary:

Corollary 4.2. For large N
c

, as p ! 1, p
I

! 1, where p
I

! 1 at rate O(1/p).

Proof. As p ! 1, c
s

/�̄ ! 0, since �̄ = pc. Then (
1��(cs/�̄+��1( 1�↵

Nc�2↵+1 ))
Nc�↵

Nc�2↵+1

)Nt(Nc�1) !

1Nt(Nc�1) = 1, at the rate that c
s

/�̄ ! 0, which is O(1
p

). ⇤

Note that the corollary holds not only when the X(s) are binary, but whenever

they are bounded as well.

5. Simulations

In Sections 5.1 � 5.3 nearest-neighbor Mahalanobis matching is used. Nearest-

neighbor matching randomly iterates through the treated units, selecting for each

match the closest control unit, without replacement. In Section 5.4 control units

are subsampled with replacement. We do not subsample treated units, and so

throughout in the Mahalanobis distance we take S = ⌃
c

. In Section 5.1 we present

simulation results that verify previous work in [RT92a] and [RS06], specifically that

Mahalanobis matching on proportional ellipsoidal distributions is EPBR. In Section

5.2 we present simulation results that show that for conditionally ellipsoidal distri-

butions the EPBR property fails, largely as a function of the number of additional

discrete covariates introduced and the initial bias in the discrete covariates. When

the initial bias is dominated by the normal covariates, the simulation results appear
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approximately EPBR. In Section 5.3 we investigate Mahalanobis Matching on purely

discrete covariates, and show that bias reduction both decreases in magnitude over

most directions relative to matching with normal distributions, and fails to retain

the property of EPBR. In Section 5.4 we compute the probability that additional

discrete covariates a↵ect the matching when the covariates are conditionally propor-

tionally ellipsoidal, and show that in practice the asymptotic lower bound computed

in Section 4.1.1 generally holds. In Section 5.5 simulations validate the asymptotic

formula for bias reduction derived in Section 2. In each section we describe simula-

tion conditions, and briefly discuss the simulation results. Code is attached at the

end of the Appendix.

5.1. Mahalanobis Matching with Ellipsoidal Covariates. In [RT92a], Rubin

and Thomas show that applying an a�nely invariant matching method to any pro-

portionally ellipsoidal distribution is EPBR. We verify these results via a simu-

lation where random outcome directions are generated (uniform distribution on

the unit sphere), and then control and treated data are drawn from normal dis-

tributions with proportional covariance matrices. The positive definite covariance

matrix we use (⌃
t

) was generated by the clusterGeneration package in R, and re-

mains fixed throughout the simulations. For the matching to be EPBR the average

bias reduction along each of the di↵erent outcome directions should be the same.

Our initial conditions for the simulations were: N
⇢

= 20, µ
t

= (3, 2, 1, 4, 2), µ
c

=

(2, 4, 1, 5, 6), N
t

= 50, N
c

= 500,⌃
c

= 3 · ⌃
t

, nsims = 100 where ⇢ is the number

of outcome directions tested, and nsims is the number of simulations that bias re-

ductions were averaged over. The bias reduction is approximately constant across

outcome directions, with a standard deviation of only 0.06. This result is unsurpris-

ing since it has been proven theoretically, but is included here for completeness and

to give the reader an idea of what EPBR in outcome directions looks like.
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Figure 1. Bias reduction for five normal covariates

5.2. Mahalanobis Matching with Ellipsoidal and Discrete Covariates. We

explore the case of matching with conditionally ellipsoidal distributions where the

additional covariates are independent and binary. Figure 4 shows the bias reduc-

tion with three normal covariates, three binary covariates, and means for normal

and binary covariates chosen uniformly. The normal covariates have proportional

covariance matrices in the treatment and control distributions, with constant of

proportionality 2 in all simulations. Figure 5 shows results under the same settings

but with the initial bias in the binary covariates scaled down by a factor of 0.09.

Figure 6 displays matching in the setting of one binary covariate and nine normal

covariates. The same covariance matrices and outcome directions are used in the

first two simulations.

In the first simulation the standard deviation of the bias reduction across each

outcome direction is 0.26, significantly larger than the .06 value observed in Section

5.1. When the exact same matching settings are used but the discrete covariate

means are scaled down by a factor of 0.09 the standard deviation drops to a mi-

nuscule 0.02, which is indistinguishable from the results in Section 5.1. The third
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Figure 2. Bias reduction for three normal and three binary covariates

2 4 6 8 10 12

-1
.0

0.
5

nsims =  100 , sd = 0.02

outcome directions

bi
as

 re
du

ct
io

n

Figure 3. Bias reduction for three normal and three binary covari-
ates with binary covariate means scaled towards 0

simulation examines how the bias reduction drops when the number of normal co-

variates grows relative to the number of binary covariates; and it does indeed drop

to 0.16. Note that we do not compare the second and third simulations because in

the third simulation the discrete covariate means are not scaled down.

To summarize, simulation results show that when discrete covariate means are

non-negligible, EPBR breaks down. As a result, the appearance of EPBR increases
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Figure 4. Bias reduction for nine normal and one binary covariate

with both scaling down discrete covariate means and increasing the number of nor-

mal covariates; although it appears that the former has a larger e↵ect. These results

are explained by the discussion following Corollary 3.5.

5.3. Matching on Discrete Covariates. We perform Mahalanobis matching in

the setting where the treatment and control distributions are binary covariates,

and we do not subsample the treated units. We perform 500 simulations, where

each treatment and control vector consists of 10 independent Bernoulli covariates,

with probabilities p
t

, p
c

. The parameters were set to N
t

= 50, N
c

= 500, N
⇢

= 10,

and the initial probability vectors were chosen uniformly. The results are displayed

below. Across the 10 di↵erent outcome directions the mean reduction in bias was

0.98, with four of the matchings actually increasing bias. The standard deviation

in ⇢ was 0.20, showing that the bias reduction was markedly non-constant. In

contrast to the previous cases, it is clear that Mahalanobis matching on binary

covariates is certainly not EPBR, and in most outcome directions has a negligible

e↵ect on reducing bias. This simulation fits into the picture of how proportionally

conditionally ellipsoidal distributions lose the EPBR property the more discrete
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Figure 5. Bias reduction for ten discrete covariates

covariates are added to the matching. Gu and Rosenbaum remark in [GR93] that

when Mahalanobis matching on binary covariates, the method fails due to extreme

sensitivity to outliers. Specifically, if one of the binary covariates has mean p and

p ! 0, then if the covariate realizes in the sample it will dominate the Mahalanobis

distance since the variance p(1�p) approaches 0. Since one coordinate is dominating

the distance it is not surprising that in the setting of many binary covariates it

neither reduces bias e↵ectively nor is equal percent bias reducing.

5.4. Convergence to Principality: Discrete Case. The asymptotic lower bound

for p
I

relies on two approximations: the convergence of the sum of p chi-squared

distributions to a normal distribution, and the actual value of ✏(1) being very close

to its expected value. These two conditions require su�ciently large p and N
c

for

the bound to actually be a lower bound. For the lower bound to be close to the true

probability, it is clear that the Mahalanobis distance should frequently approach

the maximum distance, and that the ✏(j)’s for a given x
t

be roughly independent.

Figure 5 displays Monte Carlo values for the probability of principality for a unit x
t

,

and below it the calculated lower bound. We start with 100 normal covariates, two

binary covariates, and with N
c

= 500,⌃
c

= 0.5 · ⌃
t

, and with the means randomly
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Figure 6. Approximate upper bound vs. simulated probability of
Principality

drawn. In most of the outcome directions the lower bound is relatively tight, and in

all of the directions it is in fact a lower bound, except for column 2, where the values

are still very close. In column 5 the bound is within 0.09, and in all of the columns

but column 1 and 8 the bound is within 0.2 of the simulated probability. The rea-

son for column 2 not being a lower bound can likely be attributed to the number

of simulations being set at only 20 due to time constraints. The distance of the

bound in column 1 from the simulated bound could be explained by several factors

including a large value of x
t

which leads to large correlation in the ✏0(j)s, or to the

maximal Mahalanobis bound being very high relative to the observed Mahalanobis

distances.

5.5. Matching on a Single Binary Covariate. We illustrate Theorem 2.1 in

the case where N
t

= 100, N
c

= 500. The approximation relies on the sum of N
t

, N
c

binary covariates approaching the normal distribution, and hence the approximation

holds only when N
t

, N
c

are reasonably large. We simulate the final bias, averaging

over 100 simulations, and compare this sample average to our approximation. We

vary p
t

from 0.75 to 0.95 and N
c

from 0.10 to 0.15. We keep a di↵erence in p
t

and p
c

of 0.65 because otherwise our simulated bias will nearly always be 0 since

N
c

>> N
t

. The results in Figure 6 show the approximation and then the simulated

bias in each column, with increasing values of p
t

, p
c

from left to right. The mean

di↵erence between the approximation and the simulated bias is only 0.0048, which

convinces us of the precision of our approximation.
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Figure 7. Approximated bias after matching vs. simulated values

6. Further Questions

This thesis on equal percent bias reduction and Mahalanobis matching presents a

foundation from which to explore several promising directions. We now summarize

some possibilities for future investigation.

Problem 1. In Theorem 2.1 the asymptotic formula for matched bias is a

function of �
c

, �
t

, N
t

, N
c

, and µ
t

� µ
c

, where µ
i

= p
i

· N
i

. We conjecture

that for n > 1 binary covariates the matched bias is a function of µ
t

�

µ
c

, N
t

, N
c

,⌃
c

,⌃
t

.

Problem 2. The lower bound for p
I

can be tightened by using the approx-

imate moment for ✏(1) that accounts for correlation between the ✏(j)’s, via

the technique in [OS62]. Obtaining an upper bound for p
I

would also be of

theoretical interest.

Problem 3. Can the asymptotic bound for p
I

be extended to the case when

additional covariates are not bounded? Specifically, if the additional covari-

ates are normally distributed (but not proportionally), can we make a proba-

bilistic statement bounding the sample Mahalanobis distance, perhaps using

techniques similar to the limit laws for singular values of random matrices?
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Problem 4. Applications of the concept of principality to latent bounded

covariates with a linear relationship to the outcome variable are yet to be

explored.

Problem 5. Why precisely does EPBR break down for binary covariates,

past the reasoning from [GR93] given in Section 5.3? Perhaps a combinato-

rial approach in the style of Section 2 could be useful.

7. Appendix

7.1. Integrals from Section 2.1.

•
Z 1

�1
z�(az�b)�(z)dz =

Z 1

�1

Z
az�b

1
z�(z)�(y)dydz =

Z 1

�1

Z 1

y+b
a

z�(z)�(y)dzdy =

Z 1

�1
�(y)�(

y + b

a
)dy =

ap
a2 + 1

�(
�bp
a2 + 1

),

where the last equality comes from completing the square and the fact that

the normal probability density function integrates to 1.

• Let Y, Z be distributed i.i.d standard normal.Z 1

�1
�(az� b)�(z)dz =

Z 1

�1
P (Y  aZ� b|Z = z)�(z) =

Z 1

�1
P (Z = z|Y 

aZ � b)P (Y  aZ � b) = P (Y  aZ � b)

Z 1

�1
P (Z = z|Y  aZ � b) =

P (Y  aZ � b),

since the conditional probability density function of Z integrates to 1, and

the last expression is easily seen to be �( �bp
1+a

2 ).

7.2. R Code. Attached is the R code written to simulate Mahalanobis matching

with discrete and normal covariates, exact matching on one binary covariate, and

to compute the proportion of times additional discrete covariates are principal, in

the sense of Section 4.
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! Simulations:!1!

R Code: Mahalanobis Matching with Normal and Binary Covariates 
 
#test 
#initialize parameters 
install.packages("clusterGeneration") 
require(clusterGeneration) 
install.packages("Matrix") 
require("Matrix") 
N_rho = 10 
N_t = 50 
N_c = 500 
nbin = 3 
nnorm = 9 
mult = 5 
n = nnorm + nbin 
GAMMA = mvrnorm(N_rho,rep(0,n),diag(n)) 
prob_t = runif(nbin,0,1) 
prob_c = runif(nbin,0,1) 
mu_t = runif(nnorm,0,1) 
mu_c = mult*runif(nnorm,0,1) 
alpha = 2 
sigma_t = genPositiveDefMat(nnorm,"eigen")$Sigma 
sigma_c = alpha*sigma_t 
cov_bin = diag(prob_c*(1-prob_c), nbin, nbin) 
cov = bdiag(cov_bin, sigma_c) 
COR = rep(NA, N_rho) 
rho = rep(NA, N_rho) 
# simulations 
nsims = 500 
for(j in 1:N_rho) 
{ 
 gamma = GAMMA[j,] 
 gamma = gamma/sqrt(sum(gamma^2)) 
 post = rep(NA,nsims) 
 bias = rep(NA, nsims) 
 for(m in 1:nsims) 
 { 
  # generate random samples  
  X_t = matrix(nrow = n, ncol = N_t)   
  X_c = matrix(nrow = n, ncol = N_c) 
  if(nbin != 0) 
  { 
   for(i in 1:nbin) 
   { 
    X_t[i,] = rbinom(N_t,1,prob_t[i]) 
    X_c[i,] = rbinom(N_c,1,prob_c[i]) 
   }  
  }  
  for(k in 1 : N_t) 
  { 
   X_t[(nbin+1):(n),k] = mvrnorm(1,mu_t, sigma_t) 
   
  } 
  for(u in 1:N_c) 
  { 
   X_c[(nbin+1):(n),u] = mvrnorm(1,mu_c, sigma_c) 
  } 
   
  # compute the initial bias in the random samples 
  bias[m] = gamma %*% (rowMeans(X_c)-rowMeans(X_t)) 
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! Simulations:!2!

 
  matched_treated = matrix(data = NA, nrow = n, ncol = N_t) 
  for(l in 1:N_t) 
  { 
   x_1 <- X_t[,l] 
   distances = mahalanobis(t(X_c),x_1,cov) 
   index = which(distances == min(distances)) 
   matched_treated[,l] = X_c[,index[1]] 
      X_c <- X_c[,-index[1]] 
  } 
 
  post[m] = gamma %*% (rowMeans(matched_treated)-rowMeans(X_t)) 
} 
rho[j] = sum(post)/sum(bias) 
COR[j] = cov(post,bias) 
} 
plot(rho, main = paste("nsims = ",nsims,", sd =",round(sd(rho),2)), type = "b", xlab = 
"outcome directions", ylab = "bias reduction", ylim = c(min(-
1,min(rho)),max(1,max(rho)))) 
 
 
 
R Code: Exact Matching on 1 Binary Covariate 
 
# Exact Matching on 1 Binary Covariate 
install.packages("clusterGeneration") 
require(clusterGeneration) 
install.packages("Matrix") 
require(Matrix) 
ndir = 10 
table = matrix(nrow = 2, ncol = ndir) 
for(u in 1:ndir) 
{ 
p_t = .75 + .2*(u/ndir) 
p_c = .1 + .05*(u/ndir) 
# number of treated cov 
Nt = 100 
# number of control cov 
Nc = 500 
# number of simulations to compute average bias reduction over 
nsims = 100 
post = rep(NA, nsims) 
bias = rep(NA, nsims) 
 
 for(i in 1:nsims) 
 { 
   
  # sample Nt treated units 
   
  X_t = rbinom(Nt,1,p_t) 
  # sample Nc control units  
  X_c = rbinom(Nc,1,p_c) 
  # initial bias 
     bias[i] =  mean(X_t)-mean(X_c) 
     matched_treated = rep(NA, Nt) 
 # select Nt closest matches from control population without replacement 
 for(l in 1:Nt) 
 { 
  x_1 <- X_t[l] 
  index = 1 
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! Simulations:!3!

  for(k in 1:length(X_c)) 
  { 
   if(x_1 == X_c[k]) 
   { 
    index = k  
    break 
   } 
  } 
  matched_treated[l] = X_c[index] 
     X_c <- X_c[-index] 
 } 
    # compute the posterior bias 
 post[i] = mean(X_t) - mean(matched_treated) 
  
 } 
 
# theoretical bias: E(Y_mt-Y_mc) 
mu_t = p_t*Nt 
mu_c = p_c*Nc 
sigma_c = sqrt(Nc*p_c*(1-p_c)) 
sigma_t = sqrt(Nt*p_t*(1-p_t)) 
a_1 = sigma_t/sigma_c 
a_2 = sqrt(1 + a_1^2)  
b = (mu_c-mu_t)/sigma_c  
b_2 = (mu_c-mu_t + Nt - Nc)/sigma_c 
 
approx = p_t -1/(Nt)*((mu_c-mu_t)*(pnorm(-b/a_2)-pnorm(-b_2/a_2)) + 
sigma_t*(a_1/a_2)*(dnorm(-b_2/a_2)-dnorm(-b/(a_2)))+ mu_c) 
 
table[1,u] = approx 
table[2,u] = mean(post) 
} 
 
table 
 
R Code: Irrelevance for Mahalanobis matching  
 
 
#test 
install.packages("clusterGeneration") 
require(clusterGeneration) 
install.packages("Matrix") 
require("Matrix") 
table = matrix(nrow = 2, ncol = 10) 
for(l in 1:1) 
{ 
N_c = 500 
nbin = 2 
nnorm = 100 
n = nnorm + nbin 
prob_t = rep(1,nbin)-.02*runif(nbin,0,1) 
prob_c = runif(nbin,0,1)*.02 
m_t = runif(nnorm,0,1) 
mu_c = runif(nnorm,0,1) 
sigma_nu = .2 
sigma_c = genPositiveDefMat(nnorm,"eigen")$Sigma 
sigma_t = sigma_nu*sigma_c 
cov_bin = diag(prob_c*(1-prob_c), nbin, nbin) 
cov = bdiag(cov_bin, sigma_c) 
 nsims = 20 
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! Simulations:!4!

 count = 0 
 for(m in 1:nsims) 
 {  
  # generate random control samples and a  treated unit.    
  X_c = matrix(nrow = n, ncol = N_c) 
  for(i in 1:nbin) 
  { 
   X_c[i,] = rbinom(N_c,1,prob_c[i]) 
  }   
  for(u in 1:N_c) 
  { 
   X_c[(nbin+1):(n),u] = mvrnorm(1,mu_c,  sigma_c) 
  } 
        x_t = c() 
        for(y in 1:nbin) 
        { 
         x_t = c(x_t,rbinom(1,1,prob_t[y])) 
        } 
        xnorm = mvrnorm(1,m_t,sigma_t) 
        x_t = c(x_t, xnorm) 
  distances = mahalanobis(t(X_c),x_t,cov) 
  index1 = which(distances == min(distances)) 
  X_cnorm = X_c[(nbin+1):n,] 
  distances2 = mahalanobis(t(X_cnorm),xnorm,sigma_c) 
  index2 = which(distances2 == min(distances2)) 
  if(index1 == index2) 
  { 
   count = count + 1 
  } 
 
 } 
  
  
 prob = count/nsims 
 mu_t = sqrt(sum(solve(sigma_c)%*% (m_t-mu_c))^2)/sqrt(nnorm) 
 c_s = sum(sum(solve(cov_bin))) 
 alpha = .375 
 sigma_bar = sqrt((4*mu_t^2*(sigma_nu^2+1) + 2*(sigma_nu^2 +1)^2)*nnorm) 
 mu_bar = nnorm*(1+sigma_nu^2 + mu_t^2) 
  c_1 = mu_bar + sigma_bar*qnorm((1-alpha)/(N_c-2*alpha+1)) 
 ign = (1-pnorm(c_s/sigma_bar + (c_1-mu_bar)/sigma_bar))/((N_c-alpha)/(N_c-2*alpha+1)) 
  
   
 table[1,l] = prob 
 table[2,l] = ign^N_c 
 } 
  
  
 
  
 
!
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