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Preface

One of the amazing features of algebraic geometry is the number of possible
pitfalls to fall into while learning the subject for the first time. If one attempts
to approach the subject in full generality, it will likely be difficult to build any
intuition from the overwhelming mass of technical machinery. If, on the other
hand, one attempts to approach the subject more classically, by examining many
only slightly related examples, it could be difficult to recognize the key results
amid the barrage of isolated, witty arguments. The real problem, it seems, is
that there is no clear way to develop the intuition necessary to study the subject
at any sort of deep level. This dilemma can make algebraic geometry an espe-
cially difficult subject to learn. I was no exception. I frequently would spend
hours attempting to read through proofs in which the author would implicitly
assume facts which are obvious given the proper intuition, but which otherwise
require careful verification. In order to avoid complaining about, and subse-
quently duplicating these practices, one of the main goals of this thesis is to
make all proofs completely rigorous and to avoid the temptation to hand-wave
and appeal to intuition whenever possible. I apologize in advance if this policy,
at times, becomes overkill. I decided that it was better, especially for a senior
thesis, to err on the side of explanation. Plus, this is likely to be one of the only
times in my life when I won’t have a referee requiring me to shorten my writing
and so I plan to take full advantage.
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1 Introduction

The problem of classifying algebraic varieties up to isomorphism is at the very
heart of algebraic geometry. Many classical notions, such as irreducibility,
the coordinate ring, dimension, smoothness, the Picard group, and genus (for
curves) can be associated to a variety, and are invariant under isomorphism.
Many statements about the classification of varieties can be proved using these,
and other classical notions. Del Pezzo, Kronecker, Corrado Segre and other
members of the Italian school proved many such results. More recently, the
development of cohomology has allowed for deep classification theorems that
had eluded proof using classical techniques.

Another invariant of a variety is its set of subvarieties. On its own, the set of
subvarieties is generally too large and unmanageable to be used to effectively
classify anything, however, we can frequently gain insight from certain families
of subvarieties. The most basic example of this, and the one with which we will
concern ourselves in this paper, is the problem of determining X explicitly given
the dimension of the set of lines contained in X, denoted F1(X). In particular,
we will be studying X for which dimF1(X) is large, as it is a far easier problem
than when dimF1(X) is small. Indeed, the more lines a variety contains, the
more of its structure is reflected in its Fano variety. The question of what is
meant by large is easily answered. As we will soon see, if dimX = k, then
dimF1(X) ≤ 2k − 2 with equality holding if and only if X is a k-plane. One
natural follow-up question is ’What if dimF1(X) = 2k − 3?’ This is a classical
result due to Beniamino Segre (see [S]). He proves that such an X is either a
one-parameter family of Pk−1 or a quadric hypersurface. The next case, the
one where dimF1(X) = 2k − 4, is the last case to be studied in any detail.
In 1994, Enrico Rogora proved a partial classification theorem (see [R1]). He
proved that if X ⊂ Pn with dimF1(X) = 2k − 4 has codimension greater than
two, and is swept out by its Fano variety, then either X is a two-parameter
family of Pk−2, a one-parameter family of quadrics, or it is a linear section
of G(1, 4), the Grassmannian of lines in P4. In 2005, Landsberg and Robles
handled the codimension 2 case under the Fubini hypothesis, which states that
any line meeting X at a general point with multiplicity at least two, meets with
multiplicity at least three (see [L-R]).
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2 Background

2.1 Author’s Note

One of the funny things about classical algebraic geometry is that, more than
most other subjects, the list of slightly nontrivial facts is overwhelmingly ex-
tensive. This presents one wishing to write a classical algebraic geometry paper
with a dilemma. On the one hand, it would be nice to be able to thoroughly
explain every detail. On the other hand, however, too much explanation would
likely upset the paper’s flow. In order to solve this problem, we list several
of the classical results we will be assuming, sometimes implicitly, in the argu-
ments to follow. We will leave out the proofs as the majority of them are either
uninteresting or completely standard.

2.2 Miscellaneousness

Fact. If X ⊂ Pn is an irreducible variety of dimension at least 2, then for the
general hyperplane H ⊂ Pn, the intersection H ∩X is irreducible.

Fact. If X ⊂ Pn is a nondegenerate variety then for a general hyperplane
H ⊂ Pn, X ∩H is nondegenerate.

Fact. A cone with more than one vertex is a plane.

Fact. If X is a cone with vertex p, then the tangent space to X along a general
line of X through p is fixed (ie: TqX = Tq′X for general q, q′ ∈ l, where l is a
general line of X through p).

Fact. If X ⊂ Pn is a variety and Y ⊂ X a subvariety, then for every p ∈ Y ,
TpY ⊂ TpX.

Fact. If X ⊂ Pn is a k-dimensional variety, then for the general choice of
hyperplanes H1, . . . ,Hk−r ⊂ Pn, the variety

X ′ = X ∩H1 ∩ · · · ∩Hk−r

will have dimension r.

Fact. If Z ⊂ Pn is a variety and X,Y ⊂ Z are intersecting subvarieties, then

dim(X ∩ Y ) ≥ dimX + dimY − dimZ.

Fact. Let X ⊂ Pn be a variety and let p ∈ Pn be any point. Let

πp : X 99K Pn−1

be projection through p (note that πp is regular when p /∈ X). Let Y = πp(X) ⊂
Pn−1. Then

1. if p /∈ X then deg Y = degX;
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2. if p ∈ X is a smooth point then deg Y = degX − 1;

3. if p ∈ X is a singular point of multiplicity m then deg Y = degX −m.

Fact. If p ∈ X ⊂ Pn is contained in N distinct irreducible components of X
counting multiplicity and H ⊂ Pn is a hyperplane containing p, then X and H
intersect at p with multiplicity at least N .

Fact. Let ϕ : X → Y ⊂ Pm be a surjective, finite regular map. Let deg0(ϕ) be
the projective degree of ϕ (ie: the number of points in the preimage of a general
(m − dimX)-plane in Pm), and let deg(ϕ) be the degree of ϕ (ie: the number
of points in the preimage of a general y ∈ Y ). Then

deg0(ϕ) =
(
deg Y

)(
deg(ϕ)

)
.

Fact. If X ⊂ Pn is a nondegenerate variety then degX ≥ n− dimX + 1.

2.3 Some Bigger Results

We will use the following standard result, akin to the rank-nullity theorem from
linear algebra, constantly.

Theorem (Theorem of the Fibers). Let X ⊂ Pn be an irreducible variety and
let ϕ : X → Pm be a regular map with Y = ϕ(X) ⊂ Pm. Then for every y ∈ Y ,
we have

dimX ≤ dimY + dimϕ−1(y),

with equality holding for general y ∈ Y .

We will also find occasion to use Bézout’s theorem.

Theorem (Bézout’s Theorem). If X,Y ⊂ Pn are intersecting varieties and
Z1, . . . , ZN are the components of the intersection, each Zi occuring with mul-
tiplicity mi, then

(degX)(deg Y ) =
N∑

i=1

mi degZi.

Both of these results are proved in [Shaf].

8



3 The Grassmannian

For lack of a more natural starting point, we begin by examining the Grassman-
nian.

3.1 The Grassmannian as a Variety

Let V be a vector space. The Grassmannian Gr(k, V ) is defined as the set of
k-dimensional subspaces of V . When V = An, as it always will for our purposes,
we write Gr(k, n) instead of Gr(k,An). We denote by G(k, n) the set of k-planes
in Pn. Since a k-plane through the origin in An is the same as a (k − 1)-plane
in Pn−1, we have a natural identification of G(k − 1, n− 1) with Gr(k, n).

In order to give Gr(k, n) the structure of a projective variety we must first
describe a way to embed it in a projective space. We do so using the plücker
embedding.

Definition. Define the map

Φ : Gr(k, n) → P
(
∧kV

)
= PN : R 7→ λ = v1 ∧ · · · ∧ vk,

where N =
(
n
k

)
− 1 and B = {v1, . . . , vk} is a basis for R. The map Φ is called

the plücker embedding.

Note. The plücker embedding is well defined since if {v′1, . . . , v′k} is another
basis for R then

v′1 ∧ · · · ∧ v′k = α
(
v1 ∧ · · · ∧ vk

)
where α is the determinant of the change of basis matrix A : v′i 7→ vi. Therefore,
choosing a different basis for R multiplies the corresponding k-form by a nonzero
element of the ground field K, and so the point in projective space remains
unchanged.

Note. The plücker embedding is injective since given any λ ∈ ImΦ we may
recover its preimage as the kernal of the linear map

ϕ : An → ∧k+1An : v 7→ v ∧ λ.

That Φ is injective allows us to identify Gr(k, n) with a subset of PN which is,
in fact, a subvariety due to the following claim.

Claim. Gr(k, n) ' Im(Φ) ⊂ PN is closed.

Proof. Given any [λ] ∈ PN , define the linear map

ϕλ : An → ∧k+1An : v 7→ v ∧ λ.

Notice that dim
(
kerϕλ

)
= k if and only if λ can be written as the wedge product

of k-linearly independent vectors, dim
(
kerϕλ

)
< k otherwise. Additionally,

note that [λ] ∈ ImΦ if and only if λ can be written as the wedge product of k
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linearly independent vectors. Therefore, we see that [λ] ∈ ImΦ if and only if
rank(ϕλ) = n−k ⇔ rank(ϕλ) ≤ n−k (since as noted above, if rank(ϕλ) 6= n−k
then rank(ϕλ) > n−k). However, this tells us that ImΦ is closed since [λ] ∈ ImΦ
if and only if the (n− k)× (n− k) minors of the matrix of ϕλ vanish.

Now that we have identified Gr(k, n) with a projective subvariety via the plücker
embedding Φ, we immediately become lazy and speak of Gr(k, n), itself as being
a projective subvariety of PN , rather than Φ

(
Gr(k, n)

)
. Similarly, we frequeltly

speak of the k-plane R ∈ Gr(k, n) as being a point in PN rather than the unique
preimage of the point Φ(R) ∈ PN .

3.2 Dimension of the Grassmannian

We will determine the dimension of the Grassmannian by examining subsets

US =
{
R ∈ Gr(k, n) : R ∩ S = {0}

}
,

where S ⊂ Pn is any (n− k)-plane.

Note. Clearly US ⊂ Gr(k, n) is open since for an k-plane, R, to intersect S
nontrivially, it must be that the union of their bases is a linearly dependent
set. This says exactly that the matrix formed by putting the vectors in this
union as the columns will have determinant zero. Note that this matrix will be
well defined up to conjugation by certain (not all) change of basis matrices, and
so whether the determinant equals zero or not does not depend on the bases
chosen.

Next, we show that the open set US can be viewed (under a proper choice of
basis) as an affine chart of Gr(k, n).

Claim. For any (n − k)-plane S, we may choose a basis for ∧kAn such that
US = AN

0 ∩Gr(k, n).

Proof. First, we must decide on a choice of basis. This is easy enough, let
S ⊂ Pn be an (n − k)-plane with basis B = {vk+1, . . . , vn} and extend B to
a basis B′ = {v1, . . . , vk, vk+1, . . . , vn} for An. Next we reduce the problem to
easy linear algebra. Pick any k-plane R ∈ Gr(k, n) spanned by {w1, . . . , wk}
with

wj =
∑

i

αijvi.

If we express the k-form w1 ∧ · · · ∧ wk in terms of the basis {vm1 ∧ · · · ∧ vmk
}

for ∧kAn we have

w1 ∧ · · · ∧ wk =
∑

1≤m1<···<mk≤n

βm1,...,mk
vm1 ∧ · · · ∧ vmk

,

where βm1,...,mk
= det(αmimj

). Therefore, we see that R /∈ AN
0 if and only if

det

 α11 · · · α1k

...
. . .

...
αk1 · · · αkk

 = 0,
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which happens if and only if the vectors

ui =

 α1i

...
αki


are linearly dependent. Therefore, it suffices to show that the k-plane, R,
spanned by {w1, . . . , wk}, with wj =

∑
i αijvi, intersects S nontrivially if and

only if the vectors u1, . . . , uk are linearly dependent. This is clear. The k-
plane R will intersect S nontrivially, if and only if there is a linear combination
of the wj such that when the linear combination is written in terms of the
vi, the coefficients of v1, . . . , vk are zero (since only then will the vector lie in
S = Span{vk+1, . . . , vn}). By construction of the ui, this happens exactly when
{ui, . . . , uk} is a linearly dependent set.

Since the affine charts of the Grassmannian have the form US for some (n− k)-
plane S, much of the structure of the Grassmannian can be ascertained from
the structure of US . We, therefore, study US in greater detail. In particular,
we prove the following.

Claim. For any R0 ∈ US , we have

US ' Hom(R0, S) ' Ak(n−k)

(the isomorphisms being isomorphisms of affine varieties).

Proof. For any A ∈ Hom(R0, S) define the linear map ϕA by ϕA(v) = Av + v.
Note that ϕA is injective since if ϕA(v) = ϕA(v′) then we have Av−Av′ = v−v′,
which means a vector in S must equal a vector in R0. Since S ∩ R0 = {0} we
must have v = v′. Therefore, Im(ϕA) is a k-plane which intersects S only at
{0}. Therefore we have a map

ψ : Hom(R0, S) → US

A 7→ Im(ϕA).

Clearly ψ is injective since if Im(ϕA) = Im(ϕB) then for every v ∈ R0 there
exists a v′ ∈ R0 such that ϕA(v) = ϕB(v′) which gives us Av − Bv′ = v − v′,
and so again we have v = v′ and so Av = Bv for every v.

We now show that ψ is surjective. Since R0 and S intersect trivially and are of
complimentary dimension, {v1, . . . , vn} is a basis for An where {v1, . . . , vk} is a
basis for R0 and {vk+1, . . . , vn} is a basis for S. Therefore, for any R ∈ US , any
v ∈ R can be written uniquely as

v = (α1v1 + · · ·+ αkvk) + (αk+1vk+1 + · · ·+ αnvn) = vR0 + vS ,

and so we may define linear maps

πR0 : R→ R0 : v 7→ vR0 ; and πS : R→ S : v 7→ vS .
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Note that πR0 is injective since if there exist v, v′ ∈ R such that vR0 = v′R0
then

v − v′ = vS − v′S . However, v − v′ ∈ R and vS − v′S ∈ S, and so v = v′ (since
R ∩ S = {0}). This allows us to define a linear map A : R0 → S such that the
following diagram commutes

R
πR0

~~}}
}}

}}
}

πS

��?
??

??
??

?

R0
A // S

This A is an element of Hom(R0, S) with the property that Im(ϕA) = R. There-
fore, ψ(A) = R, and ψ is surjective.

Finally, note that ψ is a regular map with a regular inverse. It is clearly regular
since if we choose a basis a basis {w1, . . . , wk} for R0 then

ψ(A) = Aw1 ∧ · · · ∧Awk.

The inverse map is also regular since given R which intersects S trivially, we
simply define ψ−1(R) = πS ◦ π−1

R0
.

Note. This tells us that US is irreducible, and has dimension k(n− k).

One easy lemma, and then we are ready to compute the dimension, and prove
the irreducibility of Gr(k, n).

Lemma. Let X ⊂ Pn be a projective variety, and let U1, . . . , UN ⊂ X be open,
irreducible and satisfying Ui ∩ Uj 6= ∅ for all i, j. Then X is irreducible.

Proof. Suppose X = X1 ∪ X2. Then for each i, Ui = (Ui ∩ X1) ∪ (Ui ∩ X2).
Therefore, either Ui = Ui ∩X1 or else Ui = Ui ∩X2. If Ui 6= Ui ∩X2 for some
i then clearly Ui = Ui ∩X1. Therefore, X1 contains Ui ∩ Uj for all j. As each
Ui ∩ Uj is nonempty, X1 contains an open dense subset of Uj for each j. Since
X1 is closed, it must be then that X1 contains Uj for all j. Therefore, since
X = U1 ∪ · · · ∪ UN , X1 = X, and so X is irreducible, as desired.

Proposition. The Grassmannian Gr(k, n) is irreducible of dimension k(n−k).

Proof. As we have already seen, the Grassmannian is covered by open sets of
the form US , each of which is irreducible. Therefore, in order to use the lemma
we simply must remark that for any two (n−k)-planes, S, S′ ⊂ An, there exists
a k-plane Γ ⊂ An such that Γ ∩

(
S ∪ S′

)
= {0}. This last fact can be proven,

for example, by an easy induction on k.

Note. The Grassmannian of k-planes in Pn is an irreducible variety of di-
mension (k + 1)(n − k), since we have a natural identification of G(k, n) with
Gr(k + 1, n+ 1).
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3.3 A Useful Calculation

At this point, we halt to make a calculation that we use will use implicitly
throughout this paper. For any r-plane Γ0 ⊂ Pn, r ≤ k, we calculate dim GΓ0

where
GΓ0 = {Λ ∈ G(k, n) : Γ0 ⊂ Λ}.

To do this, we consider the variety

Z = {(Γ,Λ) : Γ ⊂ Λ} ⊂ G(r, n)×G(k, n).

This is a variety because if {v1, . . . , vr} is a basis for Γ, and λ is a k-form
corresponding to Λ, then a the pair (Γ,Λ) is in Z if and only if vi ∧ λ = 0 for
all i = 1, . . . , r, which gives equations in the plücker coordinates of G(r, n) and
G(k, n). Let π1 : Z → G(r, n) and π2 : Z → G(k, n) be the projection maps.
Clearly the πi are surjective. Therefore, by the theorem of the fibers we have
that for general Γ0 ∈ G(r, n) and Λ0 ∈ G(k, n),

dim G(r, n) + dim GΓ0 = dimZ = dim G(k, n) + dimπ−1
2 (Λ0).

Note that for any Λ0 ∈ G(k, n),

π−1
2 (Λ0) ' {Γ ∈ G(r, n) : Γ ⊂ Λ0} ' G(r, k).

Therefore, for general Γ0 ∈ G(r, n), we have

dim GΓ0 = dim G(k, n) + dim G(r, k)− dim G(r, n) = (k − r)(n− k).

Finally, note that this holds for all Γ0 ∈ G(r, n) since for any Γ0,Γ1 ∈ G(r, n)
any of the projective lienar maps mapping Γ0 to Γ1 will induce an isomorphism
GΓ0 ' GΓ1 .

3.4 The Fano Variety

For any set S ⊂ Pn, we define

Fr(S) = {Λ ∈ G(r, n) : Λ ⊂ S}

to be the set of r-planes contained in S.

Note. Clearly Fr(S ∩ S′) = Fr(S) ∩ Fr(S′).

Claim. If X ⊂ Pn is a projective variety then Fr(X) is a subvariety of the
Grassmannian G(r, n).

Proof. By the above note, it suffices to prove the claim for X ⊂ Pn a hypersur-
face. Let PN be the projective space parametrizing all degree d hypersurfaces
in Pn (ie: the projectivization of the vector space whose basis is the set of de-
gree d monomials in the variables S0, . . . , Sn). Then any hyperplane, H, in PN
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corresponds to a hypersurface φ(H) ⊂ Pn. Given a hyperplane H ⊂ PN , let ϕH

be the polynomial that defines φ(H). Then define the set

Z = {(Λ,H) : Λ ⊂ φ(H)} ⊂ G(r, n)× PN .

Once we show that Z is a variety, it is clear that Fr(X) is a variety since
Fr(φ(H)) ' π−1

2 (H) where π2 : Z → PN is projection onto the second compo-
nent.

To see that Z is a variety, note that (Λ,H) ∈ Z if and only if ϕH vanishes on all
of Λ. We show that the vanishing of ϕH on Λ follows from the vanishing of ϕH

on finitely many points of Λ. This is a result of Bézout’s theorem. Note that for
any line in Λ, if ϕH vanishes on d+1 points on the line, then it vanishes on the
entire line (since degϕH = d). Similarly, for any plane in Λ, if ϕH vanishes on
d+ 1 lines in the plane, then it vanishes on the entire plane (since for a general
line in the plane, we would have d+ 1 vanishing points on the line, and so ϕH

must vanish on the general line of the plane). Therefore, in order to show that
ϕH vanishes on a plane of Λ it suffices to check that ϕH vanishes on (d + 1)2

points. Similarly (we may prove it easily by induction if we like), the vanishing
of ϕH on all of Λ follows from the vanishing on (d + 1)r points (r = dim Λ).
Finally, since the only requirement of these points is that they must be grouped
into sets of d+ 1 which lie on the same line, and the (d+ 1)r−1 resulting lines
must be grouped into sets of d + 1 which lie in a plane, and so on, we may
choose (d + 1)r such points in terms of any basis for Λ. Therefore, we have
regular functions xi(Λ) for i = 1, . . . , (d+ 1)r which denote the (d+ 1)r points
of Λ. So finally, we see that Z is a variety since it is cut out be the equations

ϕH

(
xi(Λ)

)
= 0 : i = 1, . . . , (d+ 1)r,

and we are done.
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4 Our First Classification Result

4.1 A Maximum for dim Fr(X)

Claim. Let X ⊂ Pn be a projective variety of dimension k, and let H ⊂ Pn be
a hyperplane. Then as long as H contains some r-plane that is contained in X,

dimFr(X ∩H) ≥ dimFr(X)− r − 1.

Proof. Let H ⊂ Pn be a hyperplane containing some r-plane in X. Note that
Fr(H) = G(r, n−1) and so Fr(H) has codimension r+1 in G(r, n). Additionally,
since H contains an element of Fr(X), the Fano variety of the intersection is
nonempty. Therefore, we have

dimFr(X ∩H) = dim
(
Fr(X) ∩ Fr(H)

)
≥ dimFr(X) + dimFr(H)− dim G(k, n)
= dimFr(X)− r − 1,

as desired.

Claim. Let X ⊂ Pn be a projective variety of dimension k. Then

dimFr(X) ≤ (r + 1)(k − r).

Proof. We prove this by induction on k. When k = r, the claim is trivial
since X may contain at most finitely many r-planes, as each one would be an
irreducible component. Therefore, dimFr(X) ≤ 0 (we use the convention that
dim ∅ = −1). Now suppose dimX = k > r and that X contains at least one
r-plane (since otherwise the result is clear). By the previous result, it suffices
to find a hyperplane H ⊂ Pn such that H contains an r-plane of X and does
not contain an irreducible component of X of maximal dimension (since then
dim(X ∩H) = k − 1, and so the result follows by induction).

Clearly if no irreducible component of X with maximal dimension is degenerate
then any hyperplane will have the property that it does not contain a compo-
nent of maximal dimension. The situation is only slightly more complicated
when X has degenerate components. Let X1 ⊂ X be an irreducible component
of dimension k, and suppose that X1 is degenerate, spanning an m-plane Γ.
Furthermore, suppose m is minimal. Notice that any hyperplane, H, not con-
taining Γ will not contain X1, since otherwise X1 would lie in the (m−1)-plane
Γ∩H which contradicts the minimality of m. Finally, since dimX1 = k > r we
must have m > r. Therefore, finding a hyperplane with the desired property is
equivalent to finding one which contains a given r-plane, but does not contain
any element of a finite set of planes, each with dimension strictly greater than
r. The latter is clearly possible, and so we are done.

Note. This maximum is obtained. If X ⊂ Pn is a k-plane, for example, then
Fr(X) = G(r, k) and so dimFr(X) = (r + 1)(k − r).
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4.2 The Classification Theorem

In this section we prove the following theorem.

Theorem 1. If X ⊂ Pn is a projective variety of dimension k such that
dimFr(X) = (r + 1)(k − r) then X contains a k-plane.

Note. We speak of X containing a k-plane, rather than X being a k-plane
to allow for the possibility that X is reducible. However, it is certainly true
that any k-plane of X must be an irreducible component. Furthermore, by the
following observation, it suffices to consider the case when X is irreducible.

Note. We clearly have

Fr(X1 ∪X2) = Fr(X1) ∪ Fr(X2)

since for an r-plane, Λ, to be in X1 ∪ X2 it must be that either Λ ⊂ X1 or
else Λ ⊂ X2 since planes are irreducible. Therefore, if X = X1 ∪ · · · ∪ Xm is
a k-dimensional variety with dimFr(X) = (r + 1)(k − r) then it must be that
dimFr(Xi) = (r+1)(k−r) for some i. Furthermore, it must be that dimXi = k
since if dimXi were any less, Xi would violate the upper bound of the Fano
variety found in the previous section. Therefore, theorem 1 follows from the
following.

Theorem. If X ⊂ Pn is an irreducible, projective variety of dimension k such
that dimFr(X) = (r + 1)(k − r), then X is a k-plane.

Proof. We prove this by induction on r. Because the proof is slightly long we
break it up into two steps: the base case (r = 1) and the r > 1 case.

Step 1: r = 1

Let X ⊂ Pn be an irreducible k-dimensional variety such that dimF1(X) =
2k − 2. Clearly X is swept out by its Fano variety, since if the lines of F1(X)
were to sweep out a proper subvariety, X ′ ⊂ X, it would be that dimX ′ ≤ k−1
but dimF1(X ′) = 2k−2 which violates the upper bound of dimFr(X ′) obtained
in the previous section. By using the theorem of the fibers on the variety

Z = {(p, l) : p ∈ l} ⊂ X × F1(X),

and its projections π1 : Z → X and π2 : Z → F1(X), we get that for general
p ∈ X, dim Σp = k − 1 where Σp ⊂ F1(X) is the family of lines through p. Let
Xp ⊂ X be the variety swept out by Σp. Clearly Xp is a cone with vertex p, as
it consists of lines through p. Now, consider the variety

Zp = {(q, l) : q ∈ l} ⊂ X × Σp,

and its projections π1 and π2. Clearly π1(Zp) = Xp. Also, for general q ∈ Xp,
dimπ−1

1 (q) = 0, since π−1
1 (q) is the set of lines in Σp through p and q (and there

is exactly one such line). Therefore, the theorem of the fibers gives

dimXp = dim Σp + 1 = k,
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and so since X is irreducible, we see that Xp = X. But since p ∈ X was an
arbirary general point, we have that for general p, q ∈ X, X = Xp = Xq. This
means that X is a cone with more than one vertex. Thereore, X is a plane.

Step 2: r > 1

When r > 1, given any hyperplane H ⊂ Pn, we can define a map

ϕH : Fr(X) 99K Fr−1(X ∩H)
Λ 7→ Λ ∩H.

Clearly ϕH is regular on the set of r-planes of X which are not contained in H.
Also note that

ϕ−1
H (Γ) = {Λ ∈ Fr(X) : Γ ⊂ Λ 6⊂ H}.

Let dimFr(X) = (r+ 1)(k− r). If we can show that for general H, and general
Λ ∈ ImϕH , dimϕ−1

H (Γ) ≤ k − r we will be done because then we would have

dimFr−1(X ∩H) ≥ dimFr(X)− k + r = r(k − r).

By induction, we have thatX∩H is a (k−1)-plane (we knowX∩H is irreducible
since H is general and X is irreducible), and so the intersection of X with a
general hyperplane is a (k − 1)-plane. Therefore, degX = 1 and so X is a
k-plane.

Let H ⊂ Pn be a general hyperplane, and let Γ be a general (r − 1)-plane in
ImϕH . Since any Λ ∈ ϕ−1

H (Γ) must lie in X, for a general point p ∈ Λ, Λ ⊂ TpX.
Since X is swept out by the r-planes in its Fano variety (by reasoning as in the
base case), and Γ and H were general, p is a general point of X. Therefore,
dim TpX = k. This means that ϕ−1

H (Γ) ⊂ GΓ where GΓ is the set of r-planes in
TpX which contain the (r−1)-plane Γ. By our useful calculation, dim GΓ = k−r,
and so dimϕ−1

H (Γ) ≤ k − r, as desired.

4.3 Discussion

This theorem is not surprising in the least. Clearly we would expect that of all
k-dimensional varieties, a k-plane contains the most r-planes. In the upcoming
section, we will attempt to classify the k-dimensional varieties whose Fano va-
rieties have dimension near the maximum. It will not be surprising that such
a variety is not far from a k-plane. Before we can prove the next classification
theorem, however, we must develop the second fundamental form.
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5 The Second Fundamental Form

5.1 Tangent Space of the Grassmannian

First, note that G(r, n) is smooth since for any two r-planes Λ,Λ′ ∈ G(r, n),
there is an automorphism of G(r, n) mapping Λ to Λ′ (projective linear auto-
morphisms of Pn induce automorphisms of G(r, n)). Therefore, since automor-
phisms map singular points to singular points, if Λ is a singular point of G(r, n),
then every point of G(r, n) would be singular, which can’t be the case.

Therefore, since dim G(r, n) = (r+1)(n− r), for any Λ ∈ G(r, n) = G, TΛG will
be a vector space of dimension (r + 1)(n− r).

If we want to be more explicit, recall that for any (n− r)-plane S such that the
affine chart, US , contains Λ, US ' Hom(Λ̃, S̃), where Λ̃ ⊂ An+1 is the (r + 1)-
plane lying above Λ and S̃ is the quotient of the (n− r+1)-plane lying above S
by its intersection with Λ̃. Note that Hom(Λ̃, S̃) is a vector space of dimension
(r + 1)(n − r). Additionally, note that this construction needn’t depend on
the choice of S since for every (n− r)-plane, S, that intersects Λ trivially, S̃ is
canonically isomorphic toKn+1/Λ̃, and so we see that TΛG = Hom(Λ̃,Kn+1/Λ̃).

If we want to be still more explicit, let C = {Λ(t)} ⊂ G is a curve in the
Grassmannian parametrized by t such that Λ(0) = Λ. Furthermore, suppose
C is smooth at Λ. This means that TΛC is a one dimensional vector subspace
of Hom(Λ̃,Kn+1/Λ̃). Let ϕ ∈ TΛC be a nonzero vector. If we choose some
v ∈ Λ, we must determine the action of ϕ on v. To do this, choose any curve
C ′ = {v(t)} ⊂ Pn such that v(t) ∈ Λ(t) and v(0) = v. Then because ϕ is a
tangent vector to C, it must map v to the tangent vector of C ′. So ϕ(v) = v′(0).
We now show that ϕ does not depend on the choice of the curve C ′. Let
C ′′ = {w(t)} ⊂ Pn be another curve such that w(t) ∈ Λ(t) for every t and
w(0) = v(0) = v. Let {ṽ(t)} ⊂ An+1 be a curve lying above C ′. Similarly, let
{w̃(t)} ⊂ An+1 be a curve lying above C ′′. Then w̃(t)− ṽ(t) ∈ Λ̃(t) for every t,
and so

ũ(t) =
w̃(t)− ṽ(t)

t
∈ Λ̃(t),

for every nonzero t. As it stands, {ũ(t)} is not closed, however, if we correct
this by defining

ũ(0) = w̃′(0)− ṽ′(0).

Since ũ(t) ∈ Λ̃(t) for every t, we see that ϕ is well defined as a map to Kn+1/Λ̃.

Finally, note that two curves in the Grassmannian, C = {Λ(t)} and D = {Γ(t)}
satisfying Λ(0) = Γ(0) = 0 will give rise to the same tangent vector ϕ if and only
if curves {v(t)} and {w(t)} can be chosen satisfying v(t) ∈ Λ(t), w(t) ∈ Γ(t) and
v(0) = w(0) = v so that {v(t)} and {w(t)} are tangent at v, which is possible
if and only if the Grassmannian curves C and D are tangent at Λ. Finally,
given any linear map ϕ ∈ Hom

(
Λ̃,Kn+1/Λ̃

)
, we can construct a curve, C, in
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the Grassmannian so that ϕ arises as the tangent vector to C at Λ. Therefore,
we have a natural identification of TΛG with Hom

(
Λ̃,Kn+1/Λ̃

)
.

5.2 The Second Fundamental Form - A First Glance

There are many ways to understand the second fundamental form of a variety
X at a point p. In differential geometry, for example, the second fundamental
form of a real manifold at a point may be written down explicitly as a symmetric
bilinear form on the tangent space which can be used to quantify the curvature of
the manifold. We do not need to be quite so explicit for our algebraic purposes,
which is lucky because it might have been difficult to use a value in an arbitrary
characteristic 0 field K to quantify anything. Nevertheless, the intuition behind
the second fundamental form is the same. In short, it measures the motion of
the tangent space away from a given vector along another given vector. We
develop the second fundamental form here in two somewhat different ways. We
begin with the more classical approach using the Gauss map, and then, because
it will make several of the properties we will need more clear, we develop it by
looking at the Taylor expansion of a tangent hyperplane section. In order to
define the second fundamental form, we must first define the Gauss map. If
X ⊂ Pn is a k-dimensional variety, then the Gauss map of X is a map

G : X 99K G(k, n)
p 7→ TpX.

Note. Clearly, G is regular on Xsm.

The differential of the Gauss map, therefore, is a map

(dG)p : TpX → Hom(Λ̃,Kn+1/Λ̃),

where Λ = TpX. In order to be more explicit, let

ϕi = (dG)p

(
∂v

∂ti
(0)

)
.

Then, by reasoning similar to that at the end of the discussion of the tangent
spaces to the Grassmannian section, we see that ϕi will act on Λ̃ by

ϕi

(
∂v

∂tj
(0)

)
=

∂2v

∂ti∂tj
(0),

and
ϕi(p) =

∂v

∂ti
(0).

Clearly then, p ∈ kerϕi for every i, and so we have a map

(dG)p : TpX → Hom(Λ̃/p̃,Kn+1/Λ̃) = Hom(TpX,NpX).

This map may also be viewed as

(dG)p : TpX ⊗ TpX → NpX.
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Note. This last map is clearly symmetric in its arguments because

∂2v

∂ti∂tj
(0) =

∂2v

∂tj∂ti
(0).

Therefore, we have a map

(dG)p : Sym2(TpX) → NpX,

which we can dualize to obtain a map

(dG)∗p : NpX
∗ → Sym(TpX

∗).

The last observation we must make before defining the second fundamental form
is that the set of symmetric bilinear forms on TpX is naturally identified with
the set of quadrics on TpX. Explicitly, this map sends a linear form on NpX,
say ϕ, to a quadratic polynomial on TpX, say ψ where

ψ : a1
∂v

∂t1
(0) + · · ·+ ak

∂v

∂tk
(0) 7→

n∑
i,j=1

aiaj · ϕ
(

∂2v

∂ti∂tj
(0)

)
.

Definition. We define the second fundamental form of X at p, denoted II p, to
be the quadrics on TpX contained in the image of (dG)∗p.

Note. Because the map (dG)∗p is linear, the quadrics in the image can be seen to
span a vector space. Therefore, the second fundamental form is a linear system
of quadrics. In true projective spirit, we say that the dimension of the second
fundamental form, denoted dim II p, is one less than the dimension of this vector
space of quadrics.

Definition. We define the base locus of the second fundamental form of X at
p, denoted Bp to be the common zero locus of the quadrics in II p.

Note. As we have defined it, the base locus is a subvariety of the Zariski tangent
space, TpX, however, we generally prefer to view it as a projective subvariety
of TpX by taking the closure of the embedding TpX ↪→ TpX. When there is
danger of confusion, we will call the subvariety of the Zariski tangent space the
Zariski base locus, and we will call the subvariety of the projective tangent space
the projective base locus.

Note. Since all of the quadratic polynomials in II p are homogeneous, the
Zariski base locus will be a cone with the origin as its vertex. This means
that the projective base locus is a cone with vertex p.

We make one observation before describing an alternative, but equivalent view-
point of the second fundamental form.

Claim. If Λ ∈ Fr(X) is an r-plane that passes through the smooth point p then
Λ ⊂ Bp.
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Proof. If we choose local parameters for X around p,

v(t1, . . . , tk) = v(T ) = [v0(T ), . . . , vn(T )],

then we can assume that v is linear with respect to t1, . . . , tr (since Λ ⊂ X).
Therefore,

∂2v

∂ti∂tj
= 0,

for every 1 ≤ i, j ≤ r. Since the points of TpX corresponding to Λ are spanned
by

{
p, ∂v

∂ti
(0) : i = 1, . . . , r

}
, every point of Λ will be in the zero locus of every

quadric in II p and so Λ ⊂ Bp.

5.3 The Second Fundamental Form - Another First Glance

Again, we let X ⊂ Pn be a k-dimensional variety locally parametrized by
v(t1, . . . , tk) with v(0) = p, a smooth point. Then for any hyperplane con-
taining p, H ⊂ Pn defined by the linear form ψH(S0, . . . , Sn) = 0, we have that
H ∩X is locally defined by

ψH

(
v(t1, . . . , tk)

)
= 0,

which we Taylor expand, to get

0 = ψH(p) +
n∑

i=1

ψH

(
∂v

∂ti
(0)

)
ti +

1
2

n∑
i,j=1

ψH

(
∂2v

∂ti∂tj
(0)

)
titj + · · · .

Clearly ψH(p) = 0 since p ∈ H. Additionally, if we let H be a tangent hyper-
plane, then the second sum will also vanish. Therefore, when H is a tangent
hyperplane, we have

0 = ψH

(
1
2

n∑
i,j=1

∂2v

∂ti∂tj
(0)titj

)
+ (higher order terms),

and so we get a map from the set of all tangent hyperplanes to the set of
quadratic polynomials on Ak ' TpX (since Ak and TpX are K-vector spaces of
the same dimension). Again, since quadratic polynomials may be seen as sym-
metric bilinear forms, we have a map from tangent hyperplanes to Sym2(TpX

∗).
Finally, note that the set of hyperplanes containing Λ is naturally identified with
NpX

∗, since a hyperplane containing Λ is the same thing as a linear form on
Kn+1 that vanishes on Λ̃ (recall Λ̃ is the (k + 1)-plane in An+1 lying above Λ).
Therefore, we have a map

NpX
∗ → Sym2

(
TpX

∗) : ψH 7→ ϕH ,

where

ϕH

(
a1
∂v

∂t1
(0) + · · ·+ ak

∂v

∂tk
(0)

)
=

1
2

n∑
i,j=1

aiaj · ψH

(
∂2v

∂ti∂tj
(0)

)
.
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Therefore, our map NpX
∗ → Sym2(TpX

∗) is a scalar times the map (dG)∗p from
the previous section. In particular, the linear system of quadrics in the image
will have the same dimension, and the same set of common zeros. Therefore,
the second fundamental form may be defined in terms of the map obtained
in this way as well. By developing the second fundamental in this way, it is
immediately clear that the base locus, Bp, is the union of the lines in TpX that
intersect X at p with multiplicity at least 3. This observation gives the following
useful result.

Claim. If X ⊂ Pn is an irreducible k-dimensional variety other than a k-plane,
then the intersection multiplicity of TpX and X at p is two, for general p ∈ X.

Proof. Clearly any variety X ⊂ Pn intersects its tangent plane TpX tangentially
at p, and so the multiplicity of intersection is at least two.

Now, if p ∈ X is such that the intersection multiplicity of TpX and X at p is
greater than two, then any line through p in TpX also intersects X at p with
multiplicity greater than two. This tells us that the base locus of II p is all of
TpX, and so it must be that

∂2v

∂ti∂tj
(0) = 0

for every i and j. Now, if the general point of X has the property that the
intersection of X with its tangent plane has multiplicity at least 3, then it must
be that

∂2v

∂ti∂tj
(x1, . . . , xk) = 0

for general (x1, . . . , xk) ∈ TpX. This tells us that

∂2v

∂ti∂tj
≡ 0

for every i and j, which says exactly that the local parameters of X are linear,
and so X is a k-plane.

5.4 Two Useful Results

In this section we cite two basic theorems regarding the second fundamental
form which we will use periodically throughout the remainder of the paper. For
a proof of the following, see [T].

Proposition 1. For X ⊂ Pn a projective variety and p ∈ X any point, let

σp = k − dim II p − 1.

Then there exists a variety Z = ∞hPm such that X ⊂ Z and the tangent planes
to Z at smooth points of the general Pm are contained in a fixed P2k−h−σp for
some h = 0, . . . , k − σp.
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The following result is proved in [G-H]

Proposition 2. Let X ⊂ Pn be a k-dimensional variety, and let p ∈ X be
a general point. Suppose that the quadrics of II p have a fixed hyperplane
in common. Furthermore, suppose that dim II p ≥ 1. Then X is either a one-
parameter family of (k−1)-planes; or else it is a two-parameter family of (k−2)-
planes.
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6 Another Classification Theorem

6.1 A Maximum for dim Fr(X) when X is not a Plane

Theorem 2. If X ⊂ Pn is a k-dimensional variety other than a k-plane, then
dimFr(X) ≤ (r + 1)(k − r)− r.

Proof. When r = 1 this follows from theorem 1. Now let X ⊂ Pn be a k-
dimensional variety other than a k-plane such that dimFr(X) ≥ (r+1)(k−r)−r.
We will show that equality holds. Notice that X is still swept out by its Fano
variety because any proper subvariety, X ′ ⊂ X, must have dimFr(X ′) ≤ (r +
1)(k − r) by the upper bound for dimFr(X ′). Choose a general hyperplane
H ⊂ Pn, and, as before, we study the map

ϕH : Fr(X) 99K Fr−1(X ∩H).

It suffices to show that for general Γ ∈ ImϕH , dimϕ−1
H (Γ) ≤ k − r− 1, because

then the theorem will follow by induction. Note that since X is swept out
by its Fano variety, and H ⊂ Pn and Γ ∈ ImϕH are general, a general point
p ∈ ϕ−1

H (Γ) is a general point of X. Let p be such a point. As we saw previously,

ϕ−1
H (Γ) ⊂ GΓ,

where GΓ is the set of r-planes in TpX = Pk containing the (r − 1)-plane Γ.
Notice that ϕ−1

H (Γ) cannot be dense in GΓ since this would mean that X would
contain TpX (since for any point x ∈ TpX, the r-plane spanned by Γ and x
must be in Fr(X) and so x ∈ X). So since p ∈ X was general, X would have to
contain its general tangent plane, and so X would have to be a plane, contrary
to our hypothesis. We see, therefore, that dimϕ−1

H (Γ) ≤ k−r−1, as desired.

6.2 One-Parameter Families of (k − 1)-planes

One type of k-dimensional variety which we would expect to contain many lines
is a one-parameter family of Pk−1’s. Formally, such a variety is defined as

X =
⋃

Λ∈C

Λ ⊂ Pn,

where C ⊂ G(k − 1, n) is a Grassmannian curve, and where the general point
p ∈ X lies in exactly one (k − 1)-plane of C. Clearly X is a variety, as it is the
image of the incidence correspondence

Z = {(x,Λ) : x ∈ Λ} ⊂ Pn × C

under projection onto the first component. Furthermore, we use the theorem of
the fibers on the projection maps to deduce that dimX = k.

Notice that ⋃
Λ∈C

Fr(Λ) ⊂ Fr(X),
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and since

dim
( ⋃

Λ∈C

Fr(Λ)
)

= (r + 1)(k − r)− r,

it must be a maximal component of Fr(X).

Note. In order to show that a variety X is a one-parameter family of Pk−1, it
suffices to show that the general point is contained in a Pk−1 that is containd
in X, because with this information we can set up an incidence correspondence
and project into G(k−1, n) to obtain a curve parametrizing X (note even when
a general point is contained in a positive dimensional family of Pk−1, we can set
up the incidence correspondence and project to G(k − 1, n) to obtain a variety
of dimension say m > 1 which we can then intersect with a general (N−m+1)-
plane in P(∧kAn) to obtain a curve parametrizing X). Furthermore, in order
to show that a k-dimensional variety is an h-dimensional family of any type of
variety (quadrics, for example) we simply need to show that a general point is
contained in a (k − h)-dimensional variety of the proper type.

Finally, some terminology.

Definition. We say that the variety swept out by a family of Pm is a scroll in
Pm.

6.3 Quadrics

Quadric hypersurfaces form another class of variey that is similar to a plane.
Indeed, their degree is as close to that of a plane as possible. It is not unrea-
sonable, therefore, to suspect that they will contain many planes.

Let PN be the projective space parametrizing the set of quadric hypersurfaces
in Pn. Define the variety

Z = {(Λ, X) : Λ ⊂ X} ⊂ G(r, n)× PN ,

and let π1 : Z → G(r, n) and π2 : Z → PN be the projections. Clearly π1 is
surjective. Also, note that for any Λ ∈ G(r, n), π−1

1 (Λ) is the set of quadrics
vanishing on Λ. If we choose coordinates S0, . . . , Sn for Pn so that Λ = {Sr+1 =
· · · = Sn = 0}, then we see that π−1

1 (Λ) is the set of quadrics where every
monomial is divisible by Si for some i = r+1, . . . , n. The number of monomials,
theerefore, which are nonzero on Λ is the number of ways to choose (r + 1)
nonzero integers that add to 2. Combinatorics gives us

dimπ−1
1 (Λ) = N −

(
r + 2

2

)
.

Finally, we show that when 2r < n, π2 is surjective. Since the general quadric
hypersurface is smooth, and all smooth quadric hypersurfaces are isomorphic,
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we simply must exhibbit a single smooth quadric containing an r-plane. This
is straightforward. Let X ⊂ Pn be the quadric hypersurface defined by

S0Sn + S1Sn−1 + · · ·+ Sbn/2cSdn/2e = 0.

Then X is smooth, and will contain the r-plane

Λ = {Sr+1 = · · · = Sn = 0}.

Note. We will see later that if X ⊂ Pn is a hypersurface containing an r-plane
for some 2r ≥ n, then X must be singular. In particular, when 2r ≥ n, π2 is
not surjective.

The theorem of the fibers gives us that for general quadric hypersurfaces X,

dimFr(X) = dim G(r, n)−
(
r + 2

2

)
= (r + 1)(n− 1− 3r/2).

In particular, note that when r = 1, dimFr(X) = 2(n − 1) − 3, which is the
maximum that it could be since quadrics are not planes. Our next classification
theorem says that if X ⊂ Pn is a k-dimensional variety with dimFr(X) =
(r + 1)(k − r) − r then X is a scroll in Pk−1 or r = 1 and X is a quadric
hypersurface.

6.4 Proof of the Classification Theorem

In this section we prove the following theorem.

Theorem 3. IfX ⊂ Pn is an irreducible k-dimensional variety with dimFr(X) =
(r + 1)(k − r) − r, then X is a scroll in Pk−1, or r = 1 and X is a quadric hy-
persurface.

Proof. We break the proof into several steps.

Step 1: r = 1 (1)

In this section, we prove that if X ⊂ Pn is a k-dimensional variety with
dimF1(X) = 2k − 3 then either X is a scroll in Pk−1 or n = k + 1 and X
is a hypersurface.

Let X ⊂ Pn be a k-dimensional variety and let Σ = F1(X). Suppose that
dim Σ = 2k − 3. By examining the variety

Z = {(p, l) : p ∈ l} ⊂ X × Σ

we see that through the general point p ∈ X there passes a (k− 2)-dimensional
family of lines in Σ, denoted Σp. Just as in the proof of theorem 1, Σp sweeps
out a (k − 1)-dimensional variety, Xp ⊂ X. Since Xp is swept out by lines in
X through p, Xp ⊂ Bp. Therefore, dimBp = k − 1 (since X is not a plane).
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Now let {Q1, . . . , QN} be quadratic polynomials which span II p. If N ≥ 2 then
each Qi must be reducible, and they all must share a factor (since their common
zero locus is (k − 1)-dimensional). Therefore, if N ≥ 2, then dim II p ≥ 1 and
the quadrics of the second fundamental form share a fixed hyperplane. By
proposition 2, we have either X = ∞2Pk−2, or X = ∞1Pk−1. In the first case,
dimF1(X) = 2k − 4, and so if dim II p ≥ 1 X = ∞1Pk−1.

If dim II p = 0 then we show that either X = ∞1Pk−1 or X is a hypersurface
by using proposition 1. If dim II p = 0 then in the notation of proposition 1,
σp = k − 1 and so we get that X ⊂ Z = ∞hPm where the family of tangent
Ph+m at the general smooth points of a general Pm lie in a fixed Pk−h+1. This
gives us

k ≤ m+ h ≤ k − h+ 1,

and so h = 0 or h = 1. If h = 0, then m ≤ k + 1 and so X is a hypersurface as
we have X ⊂ Pk+1. If h = 1 then m = k − 1 and X = ∞1Pk−1.

Step 2: r = 1 (2)

In this section, we prove the theorem for the case of r = 1. By the above, all we
must show is that if X ⊂ Pn is a hypersurface such that dimF1(X) = 2k − 3,
then degX = 2. To begin with, we suppose that k = 2. So X ⊂ P3 is
a surface containing a one-dimensional family of lines. Recall from the second
fundamental form section that for general p ∈ X, TpX and X intersect at p with
multiplicity 2. Therefore, p is a singular point of order 2 of the curve TpX ∩X.
Since the finitely many lines in X through p (recall from step 1, dim Σp = k−2)
are contained in TpX, it must be that they are each irreducible components of
TpX ∩ X. Since p is a double point, it will be contained in exactly two (not
necessarily distinct since we allow for multiplicity) components of TpX ∩ X.
Therefore, either there are two lines in X passing through p or there is one
double line. In either case,

degX = (degX)(deg TpX) = 2,

as desired.

When X is a k-dimensional hypersurface we simply intersect X with a general
(n − k + 2)-plane to obtain a surface in P3. Note that if X was such that
dimF1(X) = 2k−3, then the general (n−k+2)-plane Γ ⊂ Pn will be such that
X ∩ Γ will be ruled. To see this, it suffices to show that if dimF1(X) = 2k − 3
then for a general hyperplane H ⊂ Pn, dimF1(X ∩ H) = 2k − 5. This is
immediate upon examining the variety

Z = {(l,H) : l ⊂ H} ⊂ F1(X)×G(k, k + 1)

and its projections. We get that for general l and H,

dimF1(X ∩H) = dimF1(X) + dim Gl − π2(Z) ≥ 2k − 5.
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Therefore, if X ⊂ Pk+1 is such that dimF1(X) = 2k − 3 then for the general
(n− k+ 2)-plane Γ ⊂ Pk+1, X ∩ Γ ⊂ P3 is a quadric hypersurface. Since Γ was
general it intersects X transversely and so we have

degX = deg(X ∩ Γ) = 2,

which completes the theorem for r = 1.

Step 3: r > 1

We must show that the only varieties satisfying dimFr(X) = (r+ 1)(k− r)− r
are scrolls in Pk−1. Just as in the proof of theorem 1 we choose a general
hyperplane H ⊂ Pn and we define the map

ϕH : Fr(X) 99K Fr−1(X ∩H)
Λ 7→ Λ ∩H.

The theorem of the fibers gives us

dimFr−1(X ∩H) ≥ dimFr(X)− dimϕ−1
H (Γ)

≥ (r + 1)(k − r)− r − (k − r − 1)
= r(k − r)− (r − 1),

where the second line is due to the same argument as in the proof of theorem 2;
namely, ϕ−1

H (Γ) ⊂ GΓ where G is the set of r-planes in the tangent space to X
at a point contained in Γ. Moreover, it is a proper subvariety because otherwise
X would be a plane.

Therefore, we see that if X ⊂ Pn is a k-dimensional variety with dimF1(X) =
2k − 3, then for a general (n − r + 1)-plane Γ ⊂ Pn, dimF1(X ∩ Γ) = 2k − 3.
Therefore, X ∩Γ is either a scroll or a quadric hypersurface, which means, since
Γ was general, that X is either a scroll or a quadric hypersurface. However, by
the same argument we have used twice, we can see that when X is a quadric
hypersurface, dimϕ−1

H (Γ) ≤ k − r − 2, and so when r > 1, the only varieties
with dimFr(X) = (r + 1)(k − r) − r are one-parameter families of Pk−1, as
desired.
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7 One More Classification Theorem

Definition. If X ⊂ Pn is an irreducible, k-dimensional variety such that
dimF1(X) = 2k − 2 − N , and furthermore X is swept out by its Fano vari-
ety, then we say that X is of type RN .

In theorem 1 and theorem 3 we classify varieties of type R0 and R1. A reasonable
next question for one to ask is ’can we give a classification of type R2 varieties?’
In this section we will give a complete classification in the case that X ⊂ Pn

has codimension greater than 2. We first aquaint ourselves with some type R2

varieties.

7.1 Standard Varieties

Definition. We say that a variety is standard if it is a one-parameter family of
varieties of type RN−1.

Note. If X is such a variety, then X will be of type RN , since its Fano variety
of lines will contain ⋃

x∈C

F1(Xx),

where C is a curve parametrizing X and dimXx = dimX − 1 for every x ∈ C.
Furthermore, its Fano variety cannot contain a component of greater dimension
since then a one parameter family of type RN−1 varieties would be of type
RN−1, which is not the case for general families.

We see, therefore, that two-parameter families of Pk−2 and one-parameter fam-
ilies of quadrics will be of type R2. We might expect that these will be all of
they type R2 varieties with codimension at least 3, however we have another
surprising example.

7.2 The Grassmannian G(1, 4)

Let G = G(1, 4). Recall that G ⊂ P9, and also that dim G = 6. In order
to verify that G is type R2, therefore, we must check that dimF1(G) = 8. It
is not immediately clear, however, what a one-dimensional linear subvariety of
the Grassmannian looks like. A natural guess might be they are sets of lines
which sweep out a plane in P4. This is not quite right, however, as the following
example shows.

Example. Choose any 2-plane, Γ ⊂ P4, and let C ⊂ Γ be a smooth curve of
degree 2. Let

G : C → G(1, 2) ⊂ G(1, 4)

be the Gauss map, and let Y = G(C) ⊂ G(1, 4). Since the fibers of the Gauss
map are finite, the variety swept out by the lines of Y will be two-dimensional,
and will be contained in Γ. Therefore, Y sweeps out Γ. We show, however, that
Y ⊂ G(1, 4) is not a line by showing that deg Y ≥ 2.
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Since G(1, 2) ' P2, we can view the Gauss map as a map G : C → P2. Therefore,
to calculate deg0(G), we must find the number of points in the preimage of a
general line in G(1, 2). Choose general points p1, p2, p3 ∈ Γ (note that the pi

span Γ). If we choose vectors vi ∈ p̃i (where p̃i is the line in affine 3-space
lying over pi), then the points of G(1, 2) are linear combinations in the vi ∧ vj .
Therefore,

L =
{
A

[
v1 ∧ v2

]
+B

[
v1 ∧ v3

]
: [A,B] ∈ P1

}
is a general line in G(1, 2) (that L ⊂ G(1, 2) is clear because G(1, 2) ' P2).
Notice that

G−1(L) = {p : p1 ∈ TpC}.

For a fixed line l ∈ Y , define the map

ϕl : C 99K P2

p 7→ l ∩ TpC.

Note that ϕl is regular away from the point of intersection between l and C.
Clearly dimϕl(C) = 1 since otherwise every tangent line of C would pass
through a single point of P2, which clearly cannot be the case (we could, for ex-
ample, explicitly write down the equation for C and get the equation for TpC to
show directly that there is no such point). This means that for general x ∈ P2,
and some line l ∈ Y containing x, x will be the intersectiton of l and l′ for some
l′ ∈ Y . Therefore, a general point is contained in at least two lines in Y and so
deg0(G) ≥ 2.

We have
(deg Y )(deg G) = deg0(G) ≥ 2.

But deg G = 1 since any line in Y will be tangent to C at exactly one point
because degC = 2 and so if a line intersects C tangently at a point, it will not
intersect C again (tangentially or otherwise). Therefore, we see that deg Y ≥ 2
and so even though the lines of Y sweep out Γ, Y is not a linear subspace of
G(1, 4).

The previous example, however, suggests a guess as to what the lines in G(1, 4)
might be. We saw that the lines of G(1, 2) were spanned by the 2-forms v1 ∧ v2
and v1 ∧ v3, and the following claim tells us that the lines in G(1, 4) will have
a similar form. Now that G(1, 2) is out of the picture, we are in no danger of
confusing the two different Grassmannians, and so we return to letting G =
G(1, 4).

Claim. The lines in G are exactly the subsets of the form

L =
{
A

[
v1 ∧ v2

]
+B

[
v1 ∧ v3

]
: [A,B] ∈ P1

}
,

for three linearly independent vectors v1, v2, v3 ∈ A5.
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Proof. First, note that any such set is a line of G since it is the span of two
points of G and

A
[
v1 ∧ v2

]
+B

[
v1 ∧ v3

]
=

[
v1 ∧ (Av2 +Bv3)

]
∈ G

for every [A,B] ∈ P1.

Next, if L′ ⊂ G is any line, it must be spanned by two points of G, say v1 ∧ v2
and v3 ∧ v4. If the vi are linearly independent, then v1 ∧ v2 and v3 ∧ v4 are basis
vectors of ∧2A5, and so v1∧v2 +v3∧v4 cannot be writtin as the wedge product
of two vectors, and so we must have

v4 = α1v1 + α2v2 + α3v3.

Therefore,

Av1 ∧ v2 +Bv3 ∧ v4 = Av1 ∧ v2 +Bv3 ∧ (α1v1 + α2v2 + α3v3)
= Av1 ∧ v2 −B(α1v1 + α2v2) ∧ v3

=
A

α1
(α1v1 ∧ v2)−B(α1v1 + α2v2) ∧ v3

=
A

α1
(α1v1 + α2v2) ∧ v2 −B(α1v1 + α2v2) ∧ v3

=
(
α1v1 + α2v2

)
∧

( A
α1
v2 −Bv3

)
,

where we assume α1 6= 0 because otherwise we are done. When we let

v′1 =
1
α1

(α1v1 + α2v2); v′2 = v2; and v′3 = −α1v3,

we get
Av1 ∧ v2 +Bv3 ∧ v4 = Av′1 ∧ v′2 +Bv′1 ∧ v′3,

and so the claim is proved.

Note. The above claim tells us that the one-dimensional linear subvarieties of
G are exactly the sets of lines through a point (v1) and contained in a 2-plane
(Span{v1, v2, v3}).

Note. If we had thought a bit harder before making our first guess (that lines
in G are families of lines which sweep out a plane), we would have come up
with this, since a curved family of lines (such as the family in our example)
can still sweep out a plane, but it shouldn’t be that a curved family of lines
should correspond to a line. It should be that only noncurved families of lines
correspond to lines. A set of lines in a P2 containing a point can be seen to be a
noncurved family by letting the point in common be a point at ∞ in P2 which
would make the family of lines in the affine chart look like a family of parallel
lines.
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This last observation allows us to compute dimF1(G). It is simply the dimension
of the set of pairs

Z = {(p,Γ) : p ∈ Γ} ⊂ P4 ×G(2, 4).

We use the theorem of the fibers on the projection onto the second component
to see that dimF1(G) = dimZ = 8, and so G is of type R2.

7.3 The Theorem

The partial classification theorem for varieties of type R2 that we will prove is
the following.

Theorem 4. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k+ 3.
Then either X is

1. a two-parameter family of Pk−2; or

2. a one-parameter family of quadrics; or

3. a linear section of G(1, 4).

Notice that the hypothesis that X is of type R2 carries some additional hy-
potheses with it. First, it requires that X is irreducible. In the previous
classification theorems, the word irreducible was rather unimportant, since
dimF1(X) = 2k − 2 means that X contains a k-plane rather than simply is
a k-plane. Here, however, we could have a situation where X is the union of a
k-dimensional swept out by a (k − 1)-dimensional family of lines and a Pk−1.
Then X is swept out by its Fano variety, and dimF1(X) = 2k − 4, however,
such an X is not at all the type of variety we are interested in classifying.

The other requirement that ’type R2’ carries with it is that X must be swept
out by its Fano variety. In theorem 1 and theorem 3, this was not important
to specify because X was automatically swept out by its Fano variety. Indeed,
if the Fano variety swept out a proper subvariety X ′ ⊂ X then dimX ′ ≤ k − 1
and so the dimension of its Fano variety would violate the maximum possible.
Here, however, we do not have that luxury. In particular, if X is a k-dimensional
variety containing exactly one Pk−1, and no other lines, then dimF1(X) = 2k−4.
Such varieties do exist, An example is the projection of the Veronese k-fold from
its general point.

7.4 The Strategy

The overall approach to proving this theorem is straightforward enough. We
start from the observation that if X is a type R2 variety that is covered by its
Fano variety, then the general point p ∈ X has a (k − 3)-family of lines passing
through it, and so dimXp = k − 2 (recall Xp ⊂ Pn is the variety swept out by
the lines in X passing through p). Since Xp ⊂ Bp, we get that the base locus
at a general point has large dimension, which means that dim II p is small for
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general p. We exploit this fact to show that if X is not standard, then it must
be that Xp is irreducible for general p.

The next phase of the proof uses the fact that Xp is irreducible for general p to
show that the tangent spaces to X along a general line in X spans either a Pk,
a Pk+1 or a Pk+2. The remainder of the proof consists of examining the cases
individually.

7.5 Some Notation

Throughout the proof, we will let X ⊂ Pn be an irreducible, k-dimensional
variety swept out by its Fano variety Σ = F1(X) ⊂ G(1, n) where dim Σ = 2k−4.
For any point p ∈ X, let Σp ⊂ Σ be the locus of lines in Σ passing through p.
To compute the dimension of Σp, examine the variety

Z = {(p, l) : p ∈ l} ⊂ X × Σ,

and its projections π1 : Z → X and π2 : Z → Σ. Clearly π1 and π2 are both
surjective. Also, π−1

1 (p) = Σp. Therefore, for general p ∈ X, we have

dim Σp = dim Σ− dimX + 1 = k − 3.

Let Xp ⊂ Pn be the variety swept out by Σp. As we have seen previously,
dimXp = k − 2.

Note. Notice that the converse of the above statements also holds. That is, if
X ⊂ Pn is an irreducible variety such that through a general point p ∈ X there
passes a (k − 3)-dimensional variety of lines contained in X, then X is of type
R2. Similarly, if for general p ∈ X, dimXp = k − 2, then X is of type R2.

7.6 A Useful Theorem

As with the previous classification theorem, we begin by taking advantage of
the propositions from the second fundamental form discussion. In particular,
the claim we want is the following.

Claim. Let X ⊂ Pn be a variety of type R2. Then

1. if dim II p = 0, then X ⊂ Pk+1;

2. if dim II p = 1, k ≥ 3 and n > k + 2, then X is standard.

3. if dim II p = 2 and n > k + 2, then either X is standard, or X ⊂ Pk+3.

Note. We will only prove 3, although 1 and 2 may be proven using the same
techniques (and more easily).

Proof of 3. We use the proposition 1. Since dim II p = 2, there are four possible
values of h. Either h = 0, 1, 2 or 3.
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The case when h = 0 is easily handled since if h = 0, then X ⊂ Pm and
m ≤ k + 3. Therefore, X ⊂ Pk+3.

If h 6= 0, then X is a subvariety of a positive dimensional family of m-planes.
We make the observation that for the general m-plane, Γ ⊂ Z = ∞hPm, we
have that dim(X ∩ Γ) = k − h. To see this, we examine the variety

Φ = {(p,Γ) : p ∈ Γ} ⊂ X × Y,

where Y ⊂ G(m,n) is the h-dimensional variety in the Grassmannian parametriz-
ing Z. Since both projections are surjective, and the general point p ∈ X is
contained in finitely many m-planes of Y (since otherwise, X could be covered
by a subfamily of m-planes), the theorem of the fibers gives us that for general
Γ ∈ Y ,

dim(X ∩ Γ) = dimX − dimY = k − h.

The key idea to prove this claim when h 6= 0 is to examine the variety, XΓ,
swept out by the lines in X which intersect a general m-plane Γ ⊂ Z. Clearly
X ∩ Γ ⊂ XΓ ⊂ X, and so

k − h ≤ dimXΓ ≤ k.

Furthermore, if l ⊂ XΓ is any line contained in X that intersects Γ at a general
point p, we have

l ⊂ TpX ⊂ TpZ ⊂ Pk−h+3,

where the final containment is due to the previous result. In particular, XΓ

cannot equal X because this would say that X would be contained in a Pk−2

(since h 6= 0). Therefore, we have

k − h ≤ dimXΓ ≤ k − 1.

Next, note that since Γ ∈ Y was a general m-plane in the family, the general
point of X ∩ Γ is a general point of X. Therefore, since X is a type R2 variety,
the general point of XΓ has a (k−3)-dimensional family of lines passing through
it. We now examine the cases of h = 1, 2, 3 separately.

If h = 1 then dimXΓ = k − 1 and so dimXΓ is a type R1 variety. Therefore,
since the general point of X is contained in a (k−1)-dimensional variety of type
R1, X is a one parameter family of varieties of type R1 and so X is standard.

If h = 2 then k − 2 ≤ dimXΓ ≤ k − 1. If dimXΓ = k − 2, then XΓ is type R0

and so X is standard (two parameter family of varieties of type R0). Similarly,
if dimXΓ = k − 1 then XΓ is type R1 and so X is standard.

If h = 3, then k − 3 ≤ dimXΓ ≤ k − 1. Clearly dimXΓ 6= k − 3 since the
general point of XΓ has a (k − 3)-dimensional family of lines passing through
it. If dimXΓ = k − 2, then XΓ is type R0 and so X is standard. Similarly, if
dimXΓ = k − 1 then XΓ is type R1 and so X is standard.
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7.7 The Proof of the Classification Theorem (1)

In this section we prove that if X ⊂ Pn is a type R2 variety with n ≥ k + 3
then for general p ∈ X, Xp is irreducible. We accomplish this by examining the
degree of Xp. We begin with the following.

Claim. If X ⊂ Pn is of type R2 and is not a hypersurface, then either we have
X = ∞2Pk−2, or else for general p ∈ X, degXp ≤ 3.

Proof. Let X ⊂ Pn be a k-dimensional, type R2 variety that is not a hypersur-
face. Let p ∈ X be a general point. We have dimBp ≥ k − 2, since Xp ⊂ Bp.
Suppose that dimBp = k − 1. By the previous result, since X is not a hyper-
surface, it must be that dim II p ≥ 1. Therefore, if {Q1, . . . , QN} are quadratic
polynomials that span II p, we must have N ≥ 2. We see then that each Qi must
be reducible, and all of the Qi must share a common factor. By proposition
2, in the second fundamental form section, this means that X = ∞2Pk−2 is
standard.

On the other hand, if dimBp = k − 2 then every component of Xp is contained
in the intersection of two quadrics and so degXp ≤ 4.

Finally, if degXp = 4 then Xp is the intersection of two quadrics. Therefore,
dim II p = 1, and so, again, by proposition 2, X is standard.

Note. The above claim gives us that if X ⊂ Pn is a k-dimensional, type R2

variety with n ≥ k + 3 then for general p ∈ X, Xp is irreducible. To see this,
note that if Xp were reducible then it would have a plane as a component (since
degXp ≤ 3). However, this would mean that a general point of X would have
a (k − 2)-plane passing through it, in which case X would be a two parameter
family of (k − 2)-planes, which would make it standard.

7.8 Some Notation

Our next step is to verify that if X ⊂ Pn is a k-dimensional, type R2 variety
with n ≥ k + 3, then the tangent spaces to X along a general line span either
a Pk, a Pk+1, or a Pk+2. The proof of this fact is relatively straightforward,
however it requires the development of some terminology. In this section we
loosen the restriction that X is a type R2 variety, and we study the more general
situation in which a k-dimensional variety X is covered by an irreducible (k−1)-
dimensional family of lines.

Let Σ ⊂ G(1, n) be an irreducible (k − 1)-dimensional family of lines, and let
X ⊂ Pn be the variety swept out by Σ. For a general line l ∈ Σ, let Σl be the
closure in the Grassmannian G(1, n) of the set of lines in Σ that intersect l at a
general point. Let Xl ⊂ Pn be the variety swept out by Σl.

Note. For general l ∈ Σ we have that

Σl =
⋃

p∈l\S

Σp,
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where S ⊂ l is a fixed finite subset (recall Σp is the set of lines in Σ passing
through p). Therefore, Σl has no isolated points and so it is equidimensional
with each component being one-dimensional.

Next, let ωl ⊂ Pn be the plane spanned by the family of tangent planes to X at
smooth points of l.

Note. Clearly for general l ∈ Σ we have Xl ⊂ ωl.

Now, since every point of X has a line in Σ passing through it, for a general
point p ∈ X we can parametrize X in a neighborhood of p by

v(t1, . . . , tk) = v(T ) = [v0(T ), . . . , vn(T )],

where v(0) = p and

vi(t1, . . . , tk) = xi(t1, . . . , tk−1) + tk · yi(t1, . . . , tk−1) = xi(T ′) + t · yi(T ′),

where y(T ′) is a point (other than x(T ′)) on the line in Σ through x(T ′). There-
fore, if l ∈ Σp is a general line through p (note l ∈ Σ is a general line since p ∈ X
is a general point), the tangent space TpX is the k-plane spanned by the points

∂x

∂ti
(0) + t

∂y

∂ti
(0), for i = 1, . . . , k − 1; and l.

In this way we may define rational maps

πi : l 99K Pn

q = x(0) + ty(0) 7→ ∂x

∂ti
(0) + t

∂y

∂ti
(0),

for i = 1, . . . , k − 1, which we collect into a single rational map

φ : l 99K G(k − 2, n)
q 7→ Span{π1(q), . . . , πk−1(q)}.

Let Θ(l) ⊂ G(k − 2, n) be the closure in G(k − 2, n) of the image of φ. Let
XΘ(l) ⊂ Pn be the variety swept out by Θ(l).

Note. The linear space ωl is exactly the linear space spanned by XΘ(l) and l.

7.9 Proof of the Classification Theorem (2)

In this section, we prove that if X ⊂ Pn is a k-dimensional, type R2 variety
with n ≥ k + 3, then the family of tangent planes to X along a general line in
X spans either a Pk, a Pk+1 or a Pk+2. In light of the above notation, we must
show that for general l ∈ Σ, we have

k ≤ dimωl ≤ k + 2.

We start with the following observation.
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Note. Each πi(l) is either a point or a dense open subset of a line. Therefore,
since XΘ(l) is contained in the linear space spanned by the πi(l), we have that
XΘ(l) is contained in, at most, a P2k−3, and so ωl is contained in, at most, a
P2k−1.

Claim. If every Pk−2 in Θ(l) contains a fixed Pm, then XΘ(l) is contained in at
most a P2k−m−2, and so ωl is contained in at most a P2k−m.

Proof. If every Pk−2 of Θ(l) contains a fixed Pm then this Pm along with πi(l)
for k − m − 2 suitably chosen i will span XΘ(l) (any i such that πi(l) is not
contained in the Pm will do; note that there must be at least k−m− 2 such i).
Therefore, XΘ(l) is contained in a P2k−m−2, as desired.

Claim. Let X ⊂ Pn be a k-dimensional variety covered by an r-dimensional
family of lines, Σ ⊂ G(1, n). Then for the general l ∈ Σ, we have that dimωl ≤
2k −m, for some m such that r − k + 2 ≤ m ≤ k.

Proof. Since X is k-dimensional and covered by an r-dimensional family of lines,
we must have r ≥ k − 1. In particular, there must be a (k − 1)-dimensional
subvariety of Σ that sweeps out X (the intersection of Σ with a general choice
of hyperplanes H1, . . . ,Hr−k+1 ⊂ PN will yield such a family). By the previous
claim, it suffices to show that for the general l ∈ Σ, the tangent k-planes to X
along the smooth points of l have a fixed Pm in common for some m such that
r − k + 2 ≤ m ≤ k.

So choose such a general l ∈ Σ and let p ∈ l be a general point. Clearly Xp ⊂ X
and so TqXp ⊂ TqX for any q ∈ l. Therefore, the plane spanned by the family of
tangent spaces to X along l contains the plane spanned by the family of tangent
spaces to Xp along l. However, Xp is a cone with vertex p, and so the family
of tangent spaces along a general line through p (such as l) will be constant.
Therefore TpXp ⊂ TqX for every q ∈ l. Finally, since dimXp = r − k + 2 and
TpXp ⊂ TpX we have

r − k + 2 ≤ dim TpXp ≤ k,

and so TpXp is our desired m-plane.

The following follows immediately from the previous result. We state it as a
corollary because we will refer to it frequently.

Corollary 1. When X ⊂ Pn is a k-dimensional, type R2 variety, with n ≥ k+3,
the above gives us exactly what we wanted. Namely, we see that the family of
tangent spaces to X along a general line l spans either

1. a Pk; or

2. a Pk+1; or

3. a Pk+2.
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The above result should not be too surprising. Since our standard varieties of
type R2 contain planes of high dimension, and so as you move along a line, you
are likely staying within a given plane of high dimension, which means that a
large portion of the tangent space does not change.

Theorem 4, therefore, follows from the following three theorems.

Theorem 5. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k. Then X = ∞2Pk−2.

Theorem 6. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k + 1. Then X is standard.

Theorem 7. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k + 2. Then either X is standard or X is
a linear section of G(1, 4).

Before embarking on the proofs of any of the three theorems, we break to verify
that for general l ⊂ G(1, 4), dimωl = 8.

7.10 Another Look at G(1, 4)

Notice that G(1, 4) does fall into the third case of corollary 1. To see this, we
choose a point Λ ∈ G and we note that

TΛG = {η : η ∧ λ = 0},

where λ is the two-form corresponding to Λ. Therefore, for some line L ⊂ G,
we have

XL =
⋃
Λ∈L

TΛG = {η : η ∧
(
∧3Γ

)
= 0},

where Γ ⊂ P4 is the 2-plane swept out by the lines in L. Clearly XL is linear
as it is the kernal of a linear map. Also, dimXL = 8 since if we take a basis
{v1, v2, v3} for Γ̃ and extend it to a basis {v1, v2, v3, v4, v5} for A5, then the only
basis element of ∧2A5 that is not in XL is x4 ∧ x5. Therefore, dimXL = 8.

7.11 Proof of theorem 5

In this section we prove theorem 5. We restate the theorem.

Theorem. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k. Then X = ∞2Pk−2.

Before beginning the proof, we briefly revisit the Gauss map to cite a result we
will need.
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7.11.1 The Gauss Map Revisited

We will need the following result concerning the fibers of the Gauss map.

Proposition 3. The Gauss map of X has m-dimensional fibers if and only if,
for the general p ∈ X, all of the quadrics of II p are singular along a fixed Pm−1.
Moreover, such a Pm−1 in TpX represents a Pm on X that is the fiber of the
Gauss map.

A proof is contained in [G-H].

As a corollary, we have the following neat result. A direct proof of which can
also be found in [Z].

Fact. If X ⊂ Pn is smooth, then the fibers of the Gauss map are finite.

7.11.2 Proving Theorem 5

Proof of Theorem 5. Let l ∈ Σ be a general line and let Σl ⊂ Σ be the set of
lines which intersect l. Then dim Σl = k − 2 since

Σl =
⋃
p∈l

Σp.

Let Xl ⊂ Pn be the variety swept out by Σl. We have k − 2 ≤ dimXl ≤ k − 1.
Since the tangent space to X is fixed along general lines, the tangent space to
X is fixed along all of Xl. Therefore, Xl is contained in the fiber of the Gauss
map, which must be linear by proposition 3. Therefore, the fibers of the Gauss
map are either Pk−2 or Pk−1. In the first case, X = ∞2Pk−2, and in the second
case X is of type R1, contrary to our hypotheses.

7.11.3 An Aside

It seems that in every subject of mathmatics there are certain facts that every
student who a class in the subject will get asked to prove at one point or another.
Examples of such facts in algebra and analysis are

1. If R is a finite integral domain prove that R is a field.

2. Prove that every finite field has order pm for some prime p.

3. If f : C → C is holomorphic such that f(z) ∈ R for every z ∈ C, prove
that f is constant.

In algebraic geometry, an example of such a fact is the following.

Fact. If X ⊂ Pn is a hypersurface other than a plane and Λ ⊂ X is an r-plane
with r ≥ n

2 , then X must be singular.

We offer a proof of this fact using the Gauss map. We will use the observation
above that if X is smooth, then the Gauss map has finite fibers. We will also
use the fact that if ϕ : Pn → Pm is a regular map and m < n, then ϕ is constant.
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Proof. Let X ⊂ Pn be a smooth hypersurface other than a plane cut out by the
polynomial F . Let Λ ⊂ X be an r-plane. Then for any p ∈ Λ we have Λ ⊂ TpX.

If X ⊂ Pn is a smooth hypersurface then the Gauss map, G : X → G(n− 1, n)
is regular. Let GΛ be the set of hyperplanes in Pn that contain Λ. Then the
Gauss map restricts to a map

G
∣∣
Λ

: Λ → GΛ

(notice that G
∣∣
Λ

is regular since X is smooth). Since GΛ may be seen as the set
of linear forms on Pn which vanish on Λ, we see that GΛ ' Pn−r. Therefore,
we have a regular map

G
∣∣
Λ

: Pr = Λ → GΛ = Pn−r.

If r ≥ n
2 then we would have r ≥ n− r and so G

∣∣
Λ

would have to be constant,
contradicting the fact that when X is smooth, the fibers of the Gauss map are
finite.

7.12 Proof of Theorem 6

We now prove theorem 6, rewritten below.

Theorem. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k + 1. Then X is standard.

7.12.1 Our Approach

The second case of corollary 1 is more difficult to handle than the first case,
and our proof is more complicated. Our goal is to show that if X ⊂ Pn is a
k-dimensional, type R2 variety with n ≥ k + 3, and furthermore is such that
for general l ∈ Σ, dimωl = k + 1, then X is standard. We begin by noting
that Xp ⊂ ωl, and so for general l ∈ Σ, k − 2 ≤ dim(ωl ∩ X) ≤ k − 1. Our
first move will be to prove that if for general l ∈ Σ, dim(ωl ∩X) = k − 2 then
X = ∞2Pk−2. We then are able to proceed with the assumption that for general
l ∈ Σ, dim(ωl ∩X) = k − 1. This makes X a k-dimensional variety containing
a family of (k − 1)-dimensional varieties (namely the ωl ∩X), each of which is
contained in a Pk+1 (namely ωl). Moreover, the dimension of this family is at
least k − 1, since a (k − 1)-dimensional family of lines is needed to cover X.
We will use help from another classification to help us classify X based on this
observation. We introduce these theorems presently.

7.12.2 Del Pezzo’s Helpsul Result

Definition. A Steiner surface is the image of the Veronese surface in P5 under
projection to P3 from a disjoint 2-plane in P5.
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Definition. We say that a variety X is an extension of Y if there exists a set
of hyperplanes H1, . . . ,Hm such that Y = X ∩ H1 ∩ · · · ∩ Hm. If Y has no
extensions other than a cone, we say that Y is not extendable.

We now cite two facts, the first of which is due to Castelnuovo and Kronecker.
For proofs of these facts see [R2].

Fact. Let X ⊂ P3 be a surface containing a 2-dimensional family of hyperplane
sections which are reducible or nonreduced. Then either X is ruled or X is a
Steiner surface.

Fact. The Veronese surface in P5, the Veronese surface in P4 and the Steiner
surface in P3 are not extendible.

Definition. A surface section of a k-dimensional variety X ⊂ Pn is a section
of X with an (n− k + 2)-plane.

Claim. Let X ⊂ Pn be a k-dimensional variety other than a k-plane such that
its general surface section is ruled. Then dimF1(X) = 2k − 3.

Proof. Let G = G(n − k + 2, n) be the Grassmannian of (n − k + 2)-planes in
Pn. Define the variety

Z = {(l,Γ) : l ⊂ Γ ∩X} ⊂ F1(X)×G

with projections π1 : Z → F1(X) and π2 : Z → G. Clearly π1 is surjective,
and we are told that π2 maps onto a dense subset of G. Therefore, for general
l ∈ F1(X) and Γ ∈ G, we have

dimF1(X) + dim Gl = dimZ = dim G + dimπ−1
2 (Γ),

and so dimF1(X) = 2k − 4 + dimπ−1
2 (Γ). Finally, π−1

2 (Γ) ' F1(X ∩ Γ), and
so since the general surface section of X is ruled, dimπ−1

2 (Γ) = 1. The result
follows.

Lemma 1. Let n > 3 and let X ⊂ Pn be a k-dimensional variety. If there
exists an (n− k+1)-dimensional family of reducible or non reduced hyperplane
sections, then X = ∞1Pk−1 or it is a cone over a Steiner surface in P3 or a cone
over the Veronese surface in P4 or P5.

Proof. Let X ⊂ Pn be a k-dimensional variety with an (n− k + 1)-dimensional
family of reducible or non reduced hyperplane sections. By generically project-
ing X onto a hypersurface in Pk+1. The image will have the property that the
general surface section will be a surface in P3 with a two-dimensional family of
reducible or non reduced hyperplane sections. Therefore, by the fact by Castel-
nuovo and Kronecker, the general surface section is either ruled or a Steiner
surface. By the previous claim, the image of the projection either a cone over a
Steiner surface or a scroll in Pk−1. Therefore our original X was either a cone
over a Steiner surface, or a cone over a Veronese surface or else it was ∞1Pk−1,
as desired.
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Proposition 4 (Del Pezzo). Let X ⊂ Pn be a k-dimensional variety such that
its section with its general tangent hyperplane is (k − 1)-dimensional. Then
X ⊂ P3, or X is ruled.

Proof. We examine the case when k = 2 and k > 2 separately.

Step 1: k = 2

Let X ⊂ Pn be a surface such that the section with the general tangent hyper-
plane is a curve. If X were not in P3 then its sections with tangent hyperplanes
at general points would all be reducible. The family of tangent hyperplane sec-
tions is therefore an (n−1)-dimensional family of reducible hyperplane sections,
and so by lemma 1, X is either a Veronese surface or it is ruled (since we as-
sumed that X 6⊂ P3, and so X can’t be a Steiner surface). We now check that
X can’t be a Veronese surface.

Since the Veronese surface in P5 and in P4 are both of degree 4, the general
hyperplane section of either will be a quartic curve. Therefore, if the general
tangent hyperplane section were a curve, it would split into two irreducible con-
ics (since Veronese surfaces do not contain lines). and therefore the general
tangent line would intersect the general hyperplane section in another point.
This can’t happen for the Veronese surface in P5 because the general hyper-
plane section is a rational normal curve of degree 4, and so it has no tritangent
lines. This can’t happen for the Veronese surface in P4 because the general hy-
perplane section is contained in a quadric (since the general hyperplane section
is a rational quartic in P3), and so all the tangent lines would be rulings of such
a quadric. However, the rulings of a quadric do not envelope a curve.

Step 2: k > 2

If X is k-dimensional with k > 2, then the general surface section of X will
be so that its intersection with its general tangent plane is a curve. Therefore,
by the above, either the surface section will be in P3, or it is ruled. Therefore,
either X ⊂ Pk+1 or X is a scroll in Pk−1.

We use Del Pezzo’s result to prove the classification result that we will use to
help prove theorem 6.

7.12.3 Some Helpful Classification Results

Proposition 5. Let X ⊂ Pn be a surface containing an (n − 1)-dimensional
family of irreducible curves, each of which spans a Pn−2. Then X is contained
in Pn−1.

Proof. Let X ⊂ Pn be a surface containing an (n − 1)-dimensional family of
irreducible curves, F , where each curve in F is contained in a Pn−2. By using
the theorem of the fibers on the projection maps of the variety

Z = {(p, C) : p ∈ C} ⊂ X ×F ,
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we see that dimFp = n− 2 where Fp ⊂ F is the set of curves passing through
p. If we let πp : X 99K Pn−1 be the projection through p, then πp(X) ⊂ Pn−1

is a surface containing an (n− 2)-dimensional family of irreducible curves, each
of which is contained in a Pn−3. If we project from (n − 3) general points,
therefore, we wind up with a surface in P3 containing a 2-dimensional family of
plane curves. Therefore, this surface in P3 is a plane, and so X is contained in
the linear space spanned by this plane and the (n− 3) points of projection.

Claim. Let X ⊂ Pn be a ruled surface other than a plane. Let x ∈ X be a
general point, and let

πx : X 99K Pn−1

be projection from x. Let Y = πx(X) ⊂ Pn−1. Then if X is not a cone and Y
is not a plane, πx is birational.

Proof. Suppose πx is not birational. Then for a general point p ∈ X, there
exists a p′ ∈ X such that πx(p) = πx(p′). Let S = {l1, . . . , lN} be the set of
lines in X through p, and, similarly, let S′ = {l′1, . . . , l′M} be the set of lines
in X through p′. Since deg Y = degX − 1, there must exist i and j such that
πx(li) = πx(l′j). Let l = li, l′ = l′j , and let q = πx(p). Also let l∗ = πx(l).

As we have set it up, both l and l′ are contained in the plane spanned by q and
by l∗. Therefore l and l′ intersect each other.

For fixed p ∈ X we can define the variety

Zp = {(x, p′) : πx(p) = πx(p′)} ⊂ X ×X.

Clearly projection onto the first coordinate is surjective and finite. Therefore,
if the projection onto the second coordinate were not surjective, then it would
have one-dimensional fibers, which would mean that the line spanned by p and
p′ were contained in X. This is a contradiction because p′ is general and X is
not a plane.

We see, therefore, that the lines of X intersect each other. Since they will
intersect in a fixed point, X is a cone, contradicting our hypotheses. Therefore,
when X is not a cone, πp is birational.

Proposition 6. Let X ⊂ Pn be a surface containing a k-dimensional family of
curves in Pk. Then either

1. X ⊂ Pk+1; or

2. X is a cone; or

3. k = 2 and X is a Veronese surface in P4 or P5; or

4. X is a rational normal scroll in Pn.
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Proof. Suppose X is not contained in a Pk+1. Then we can birationally project
X to a Pk+2. Since X contains a k-dimensional family of curves in Pk, it has a
(k+1)-dimensional family of reducible hyperplane sections. Therefore, by lemma
1 from the section on Del Pezzo’s theorem, X is either a cone, or a Veronese
surface, or a ruled surface. If the general surface section of X ruled and is not a
cone, then by the previous claim we can project X from (k − 1) general points
of X, birationally to a surface X ′ ⊂ P3. The curves in X passing through the
points of projection (there is a one-dimensional family passing through each)
are mapped to lines in X ′. Since the projection is birational, we see that X ′ is
ruled in two different ways, and so it is a quadric hypersurface. Therefore, X is
a rational normal scroll in Pn. Moreover, the k-dimensional family of curves in
X are the rational normal curves of degree k on the rational normal scroll.

Note. We developed Del Pezzo’s theorem from scratch and use it to prove
proposition 6. Emilia Mezzetti takes the opposite approach in [M]. He uses
the language of schemes to prove proposition 6, and then deduces Del Pezzo’s
theorem.

7.12.4 Proof of Theorem 6

We now prove theorem 6, rewritten again below.

Theorem. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k + 1. Then X is standard.

Proof of Theorem 6. We divide the proof into several steps.

Step 1: Computing dim(ωl ∩X)

We have already noted that for any line l ∈ Σ and a point p ∈ l, we have

Xp ⊂ ωl ∩X ⊂ X,

and so for general l,
k − 2 ≤ dim(ωl ∩X) ≤ k − 1,

since it can’t be that X ⊂ ωl since n ≥ k + 3.

Recall that for p ∈ l,
Xp ⊂ Xl ⊂ ωl ∩X.

Therefore, if for general l ∈ Σ, dim(ωl ∩ X) = k − 2, then for general p ∈ l,
dimXl = k − 2. Since Xp is irreducible, it must be a component of Xl. This
tells us that for general p, q ∈ l, we have Xp = Xq, and so Xp is a cone with p
and q as vertices. Therefore, Xp is a (k − 2)-plane, and X is standard.
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Step 2: A Bit of Notation

Whether or not this section should actually count as a step in the proof is
debatable. We choose to include it as a step both because the notation it
introduces will be crucial for the remainder of the proof, and because we make
several important observations.

Let Ω be the closure in the suitable Grassmannian of the family of ωl for general
l ∈ Σ. Define the map

ψ : Σ 99K Ω : l 7→ ωl.

For any ω ∈ Ω, let Σω = ψ−1(ω). That is,

Σω = {l ∈ Σ : ωl = ω}.

Note. By using the theorem of the fibers on ψ we get that

dim Σω = dim Σ− dim Ω.

Let Xω ⊂ Pn be the variety swept out by Σω. Also define Φ(ω) ⊂ Σ to be the
set of lines which intersect Xω. Let XΦ(ω) ⊂ Pn be the variety swept out by
Φ(ω).

Note. Observe that
Φ(ω) =

⋃
p∈Xω

Σp,

and so XΦ(ω) ⊂ ω since TpX ⊂ ω for every p ∈ Xω.

Note. Also worth noting is the fact that Xω ⊂ XΦ(ω).

Step 3: A Lower Bound for dim Ω

Claim. Let X ⊂ Pn be a k-dimensional, type R2 variety with n ≥ k+ 3. Then
either X is standard or dim Ω ≥ 4.

Proof. Suppose dim Ω ≤ 3. Then dim Σω = dim Σ−dim Ω ≥ 2k−7. Therefore,
dimXω ≥ k − 2, since otherwise Xω would have a Fano variety of too high a
dimension. This tells us that k − 2 ≤ dimXΦ(ω) ≤ k.

If dimXΦ(ω) = k then X = XΦ(ω) and so X ⊂ ω which can’t be the case because
n ≥ k + 3.

If dimXΦ(ω) = k − 1 then by examining the variety

Z = {(p, l) : l ∈ Σp} ⊂ Xω × Φ(ω),

and its projections, we see that dim Φ(ω) = 2k− 5. This means that XΦ(ω) is a
variety of type R1, and so X is standard.

If dimXΦ(ω) = k−2 then XΦ(ω) = Xω, and so through the general point of Xω,
there passes a (k− 3)-dimensional family of lines (namely all of Σp), and so Xω

is a Pk−2, which means that X is standard.
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Step 4: The Key Construction

With all of the notation defined in step 2 come several natural rational maps.
Our strategy for ultimately proving theorem 6 is to use the theorem of the fibers
on two such maps. In this section, we construct the necessary rational maps
and make some necessary observations which will allow us to prove the theorem
in the step 5.

We refocus on the case when X ⊂ Pn is a k-dimensional, type R2 variety with
n ≥ k + 3, and where the general line l ∈ Σ is such that dimωl = k + 1 and
dim(ωl ∩X) = k − 1.

For any (n− k + 2)-plane, Γ ⊂ Pn, define the map

ψΓ : Ω 99K G(3, n− k + 2)
ω 7→ ω ∩ Γ.

Clearly ψΓ is regular on the open subset of Ω consisting of the (k + 1)-planes
which do not contain Γ. Let ΩΓ = ψΓ(Ω) ⊂ G(3, n − k + 2). The theorem of
the fibers gives

dim Ω− dim ΩΓ = ψ−1
Γ (Λ),

for general Λ ∈ ΩΓ. We now prove a claim which allows us to compute the
dimension of the general fiber of ψΓ if a certain condition holds.

Claim. Let Γ ⊂ Pn be a general (n−m)-plane, and define

ΩΓ = {ω ∩ Γ : ω ∈ Ω and ω 6⊂ Γ}.

If dim Ω ≤ k + 2−m, then dim ΩΓ = dim Ω.

Proof. We prove this by induction on m. For the base case let m = 1. We must
show that if dimΩ ≤ k + 1, then for a general hyperplane H ⊂ Pn, we have
dim ΩH = dim Ω.

For a general hyperplane H ⊂ Pn, define the map

ψH : Ω 99K ΩH

ω 7→ ω ∩H.

The theorem of the fibers gives us that for general Λ ∈ ΩH ,

dim Ω− dim ΩH = ψ−1
H (Λ).

Therefore, if dim Ω > dim ΩH then it must be that dimψ−1
H (Λ) ≥ 1.

Now, for ω ∈ Ω, define Gω ⊂ G(k, n) to be the set of hyperplanes contained in
ω. Clearly, Gω ' G(k, k + 1). We examine the variety

Zω = {(Λ, ω′) : Λ ⊂ ω′} ⊂ Gω × Ω
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and its projections π1 and π2. Clearly π1 is surjective. Also, note that the
general fiber of π1 is the same as the general fiber of ψH for some hyperplane
H ⊂ Pn. Therefore, if we assume that dim Ω > dim ΩH then the fiber of π1

is at least one-dimensional. This gives us dimZω ≥ k + 2. Finally, note that
the general fibers of π2 are zero dimensional since if ω′ contains two distinct
hyperplanes Λ,Λ′ ⊂ ω, then ω′ would have to contain their span, namely ω.
Therefore, we see that if dim Ω > dim ΩH then

k + 2 ≤ dimZω = dimπ2(Z) ≤ dim Ω,

and so the base case is proved.

The general case is proven almost identically to the base case. Let Γ ⊂ Pn be a
general (n −m)-plane. Let H1, . . . ,Hm ⊂ Pn be the general hyperplanes such
that Γ = H1∩· · ·∩Hm. Define Γi = H1∩· · ·∩Hi, let Ωi = ΩΓi

, and let Ω0 = Ω.
Note that Γm = Γ and so Ωm = ΩΓ. We have

dim ΩΓ = dim Ωm ≤ · · · ≤ dim Ω1 ≤ dim Ω.

We see that dim ΩΓ 6= dim Ω if and only if there exists some i, with 1 ≤ i ≤ m
such that dim Ωi < dim Ωi−1. Just as we did in the base case, we define rational
maps

ϕi : Ωi−1 99K Ωi

λi−1 7→ λi = λi−1 ∩Hi,

where λi−1 = ω∩H1∩· · ·∩Hi−1. Just as before, we see that if dim Ωi−1 > dim Ωi

then the general fiber of ϕi is at least one-dimensional. We then define Gλi−1

to be the set of hyperplanes in λi−1 and we examine the variety

Zλi−1 = {(Λ, λ′) : λ′ ∈ Λ} ⊂ Gλi−1 × Ωi−1.

Exactly as in the base case, we see that projection onto the first component
is surjective and may be assumed to have fibers with dimension at least 1.
Additionally, the projection onto the second component is finite. This tells us
that if dim Ωi−1 > dim Ωi, then dim Ωi−1 ≥ k + 3 − i. Therefore, if dim Ω ≤
k + 2 − m then dim Ωi−1 ≤ k + 2 − i for every i and so dim ΩΓ = dim Ω, as
desired.

Note. This claim tells us that when Γ ⊂ Pn is a general (n− k + 2)-plane and
dim Ω ≤ 4, then ψΓ is finite onto its image.

Note. Notice that if Γ ⊂ Pn is a general (n− k + 2)-plane and dim Ωi ≤ 4 for
any i, then

dim Ωi = dim Ωi+1 = · · · = dim ΩΓ.

This observation combined with the bound on dim Ω obtained in step 2, tell us
that if X ⊂ Pn is a nonstandard, type R2 variety then for a general (n− k+2)-
plane, Γ ⊂ Pn, we have that dim ΩΓ ≥ 4.
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In order to define the other rational map of interest, note that for a general
(n − k + 2)-plane, Γ ⊂ Pn, ω ∩ Γ ∩X is a curve in ω ∩ Γ = P3. Let FΓ be the
family of such curves as ω ∈ Ω varies. This gives us a surjective map

φΓ : ΩΓ → FΓ

ω ∩ Γ 7→ ω ∩ Γ ∩X.

Note. If the general curve of FΓ spans the P3 it is contained in, φΓ will be
generally finite, and so dimFΓ = dim ΩΓ.

Step 5: Proving the Theorem

Let Γ ⊂ Pn be a general (n − k + 2)-plane. Note that for every line l ∈ Σ,
CΓ,l = ωl ∩ Γ ∩X = Γ ∩Xl is a curve in ωl ∩ Γ = P3. Let FΓ be the family of
such curves as l ∈ Σ varies. We classify X based on how degenerate the curves
of FΓ are.

If every CΓ,l is a line. Then the general surface section of X is ruled and so
by lemma 1 from the section on Del Pezzo’s theorem, X is of type R1, which
violates our hypotheses.

Suppose now that the general curve CΓ,l spans a P2. If dimFΓ ≥ 2 then by
proposition 6, the general surface section of X is either a cone; a Veronese
surface in P4 or P5; ruled; or contained in a P3. If the general surface section
is a cone, then X is a cone with vertex Pk−2 and so X is standard. If the
general surface section is a Veronese surface then since Veronesee surfaces in P4

or P5 are not extendible, X is a cone over such a surface, and so it is a scroll in
Pk−2. If the general surface section is ruled, then by the claim in the section on
Del Pezzo’s theorem, X is of type R1. Finally, if the general surface section is
contained in P3, then X ⊂ Pk+1 which violates our hypotheses.

Now suppose the general curve of FΓ spans a 2-plane, and that dimFΓ = 1.
Let ΛΓ,l ∈ G(2, n) be the 2-plane spanned by the curve CΓ,l. We examine the
variety

Z = {(ω,CΓ,l′) : ΛΓ,l′ ⊂ ω} ⊂ Ω×FΓ,

and its projections π1 and π2. Since dimFΓ = 1, dimπ2(Z) ≤ 1. Therefore, the
theorem of the fibers tells us that for general C ∈ FΓ and ω ∈ Ω, we have

dimπ−1
2 (C) + 1 = dim Ω + dimπ−1

1 (ω) ≤ 4.

Therefore, for the 2-plane spanned by Λ, a general curve of FΓ we have at least
a three-dimensional family of P3 in ΩΓ containing Λ. However, we can project
X birationally to P5. When we do so, we wind up with a three-dimensional
family of 3-planes in P5 containing a fixed 2-plane. This is a contradiction
because given any 2-plane, the family of 3-planes in P5 containing the 2-plane
is two-dimensional.
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Now, suppose that the general curve in FΓ spans a P3. We saw in step 4,
that dimFΓ = dim ΩΓ, and if X is nonstandard then dim ΩΓ ≥ 4. However,
this means that the general surface section of X has a 4-dimensional family of
curves, each of which is contained in a P3. If we project the general surface
section of X to P5, we see that the the image under the projection is contained
in P4 by proposition 5. Therefore, the general surface section is contained in
a (n − k + 1)-plane, which says that X is degenerate, and so X ⊂ Pn−1. By
the same exact argument, X ⊂ Pn−1 will be degenerate and so X ⊂ Pn−2.
Continuing in this way, we will eventually contradict the hypothesis that X has
codimension at least 3, thereby completing the proof of theorem 6.

7.13 Proof of Theorem 7

In this section we prove theorem 7, rewritten below.

Theorem. Let X ⊂ Pn be a k-dimensional, type R2 variety, with n ≥ k + 3
such that for general l ∈ Σ, dimωl = k + 2. Then either X is standard or X is
a linear section of G(1, 4).

7.13.1 Our Approach

As observed previously, case three is the case containing the exceptional type
R2 variety, G(1, 4) (and its linear sections). Therefore, we might expect the
proof of theorem 7 to be somewhat dirtier than the proofs of theorem 5 and
theorem 6. We will find out soon enough that this is, indeed, the case. First,
we will need the help of a slew of other classification theorems. Second, we will
need to modify our techniques. Rather than dealing almost exclusively with
issues such as the dimension of a family of subvarieties, and the dimension of a
linear space spanned by the tangent spaces to X at certain points, we will also
consider issues such as the degree and the singular locus of a type R2 variety
satisfying case three of corollaro 1.

We prove theorem 7 first for fourfolds, and then we extend our results to varieties
of any dimension. First, however, we introduce, and briefly discuss, the many
classification theorems we will use.

7.13.2 Three Helpful Results

In this section we state the theorems which we will need to prove theorem
7. Since the proofs of most of these theorems use techniques which are vastly
different than the ones we have used so far, we will not give proofs.

The first theorem we use is a classification of all varieties X ⊂ Pn such that
degX = n− dimX + 1. Such varieties are called minimal degree varieties. The
following result is originally due to Del Pezzo, 1886 (for surfaces) and Bertini,
1907 (for higher dimensional varieties). For a proof, see [E-H].

Proposition 7. If X ⊂ Pn is a minimal degree variety then either
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1. X is a quadric hypersurface; or

2. X is a cone over the Veronese surface in P5; or

3. X is a rational normal scroll.

The next result we will use tells us the possible genus of a smooth curve of
degree d embedded in P4. In particular, the result is

Proposition 8. Let C ⊂ P4 be a smooth, irreducible curve of degree d and
genus g. Then if C is nondegenerate

0 ≤ g ≤ 1
6
d2 − 5

6
d+ 1.

For a proof, see [Ra].

Our next result classifies varieties whose sectional curves rational. For a proof
see [I].

Proposition 9. Let X ⊂ Pn be a variety of dimension k ≥ 2 or higher such
that the section of X with a general (n− k + 1)-plane is a rational curve (ie: a
smooth curve of genus zero). Then

1. X is a k-plane; or

2. X is a quadric hypersurface; or

3. X is a rational normal scroll; or

4. X is a cone over a Veronese surface.

7.13.3 Proof of theorem 7 for k = 4

In this section, classify all nonstandard, R2 fourfolds satisfying case three of
corollary 1. The main result is the following.

Theorem 8. Let X ⊂ Pn be a fourfold of type R2 with n ≥ 7. If X is such
that for general l ∈ Σ, dimωl = 6, and X is nonstandard then

1. degX = 5; and

2. for general p ∈ X, Xp is a rational cubic cone; and

3. X has elliptic sectional curves; and

4. X is smooth.

Proof. The proof of this theorem is rather long, and so we break it up into many
steps.
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Step 1: Reduction to the Case of n = 7

If X ⊂ Pn is a fourfold of type R2 satisfying case three of corollary 1, with
n > 7, then we may project X from (n − 7) general points of Pn to obtain a
fourfold in P7 satisfying the hypotheses of the claim. Since degree, smoothness,
and genus will all be invariant under a general projection to P7, the theorem for
any n ≥ 7 follows from the theorem for n = 7. Therefore, we proceed under the
assumption that X ⊂ P7 is a type R2 fourfold, satisfying case three of corollary
1.

Step 2: Examining Xl

Now, since X is a type R2 fourfold, for general p ∈ X we have dim Σp = 1.
Therefore, for general l ∈ Σ we have 2 ≤ dimXl ≤ 3. If dimXl = 2 then a
component of Xl coincides with Xp for general p, and so for general p, q ∈ l,
Xp = Xq. This makes Xp a plane, and so X is standard.

So we proceed under the assumption that dimXl = 3. Notice that since ωl is a
hyperplane, dim(X ∩ ωl) = 3. Since Xl ⊂ ωl we see that Xl is a component of
X ∩ ωl. We now show that it must, in fact, be equal to X ∩ ωl.

If X is such that for general l ∈ Σ, l ∩ ωl is reducible or nonreduced, then
since dim Ω ≥ 4, X has a four dimensional family of reducible or nonreduced
hyperplane sections. By By lemma 1 from the section on Del Pezzo’s theorem,
this makes X either type R1 or a cone over a Veronese surface. Obviously, X
is cannot be of type R1, and if X is a cone over a Veronese surface, than it is
∞2P2, and is standard. Therefore, we may proceed under the assumption that
Xl = X ∩ ωl for general l ∈ Σ.

Step 3: Examining X ∩ ωl ∩ ωl′

Note first, that it cannot be that for general p ∈ X and general l, l′ ∈ Σp, we
have ωl = ωl′ . This is because the rational map which surjects onto a dense
subset of Ω,

ϕ : Σ 99K Ω
l 7→ ωl,

must have zero-dimensional fibers since

4 = dimΣ = dim Ω + dimϕ−1(ω) ≥ 4 + dimϕ−1(ω).

Now, let p ∈ X be a general point, and choose two general lines l, l′ ∈ Σp. We
examine the intersection X ∩ ωl ∩ ωl′ . Since ωl 6= ωl′ , dim(X ∩ ωl ∩ ωl′) = 2.
Also, note that both ωl and ωl′ contain Xp, and so since Xp is irreducible, it
will be a component of the intersection.
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Notice, now, that it cannot be the only component. This would mean that
as l and l′ vary in Σp, X ∩ ωl ∩ ωl′ remains constant. Since we assume X is
nondegenerate, this means that ωl ∩ ωl′ is constant as l and l′ vary, which we
have already shown cannot be the case.

Now, we describe the other components of X ∩ ωl ∩ ωl′ . Choose a point x ∈
X ∩ ωl ∩ ωl′ . Then x ∈ Xl and x ∈ Xl′ . Therefore, there exists a line s ∈ Σl

containing x and intersecting l at the general point q. Similarly there exists an
s′ ∈ Σl′ containing x and intersecting l′ at q′. Clearly q, q′ ∈ Xp and both ωl

and ωl′ contain Xp. Therefore, since x, q, q′ ∈ ωl∩ωl′ we see that s, s′ ⊂ ωl∩ωl′ .
Since there can’t be infinitely many lines contained in the plane Span{l, l′} (this
would mean that X∩ωl∩ωl′ contained the plane Span{l, l′}, which would make
X standard), the lines s and s′ must be elements of two distinct families of
lines contained in X ∩ωl ∩ωl′ . This means that every irreducible component of
X ∩ωl ∩ωl′ is a quadric because it contains two families of lines. Therefore, we
have

X ∩ ωl ∩ ωl′ = Xp ∪ Y1 ∪ · · · ∪ YN ,

where Y1, . . . , YN are quadrics containing l and l′.

Step 4: Proof that N = 1

Consider the variety Xl = X ∩ ωl ⊂ ωl = P6. For a general p ∈ Xl, there is a
line l′ ∈ Σl with p ∈ l′. Then ωl ∩ωl′ ⊂ ωl is a hyperplane. If N ≥ 2 then p is a
singular point of X ∩ ωl ∩ ωl′ with multiplicity at least 3 (since it is contained
in at least three irreducible components). We take advantage of this fact by
parametrizing Xl locally about p by

v(t1, t2, t3) = v(T ) = [v0(T ), . . . , v6(T )],

with v(0) = p. If ϕ is the linear form cutting out the hyperplane ωl ∩ ωl′ ⊂ ωl,
we have

ϕ

(
∂2v

∂ti∂tj
(0)

)
= ϕ

(
∂v

∂ti
(0)

)
= ϕ(p) = 0,

for every i and j (since p has multiplicity 3). This means that

Span
{

TpXl,
∂2v

∂ti∂tj

}
⊂ ωl ∩ ωl′ = P5,

and so dimV ≤ 2, where

V = Span
{

∂2v

∂ti∂tj

}/
TpXl.

Since any quadric in the second fundamental form to Xl at p, II p, corresponds
to an element of V ∗, we see that dim II p ≤ 1 (since dim II p is one less than the
dimension of the vector space of quadrics it spans).
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Notice that if dim II p = 0 then by proposition 1, Xl ⊂ Z = ∞hPm where the
tangent Ph+m to smooth points of the general m-plane are contained in a fixed
P4−h. Therefore, h + m ≤ 4 − h and so 0 ≤ h ≤ 2. Clearly h 6= 0 since then
Xl ⊂ P4 which would make it degenerate. Also, h = 2 forces m = 0 which is
impossible since dimXl = 3. Finally, if h = 1 then m = 2 and so Xl = ∞1P2

which would make X standard.

If dim II p = 1 then also proposition 1, Xl ⊂ Z = ∞hPm where the tangent
Ph+m to smooth points of the general m-plane are contained in a fixed P5−h.
Again we get 0 ≤ h ≤ 2. We can immediately eliminate h = 0 since it requires
Xl to be degenerate.

If h = 1 then 2 ≤ m ≤ 3. If m = 2 then Xl = ∞1P2 and so X is standard. If
m = 3 then we have Xl ⊂ Z = ∞1P3. Choose a general 3-plane Γ ⊂ Z. Define,
as before XΓ to be the lines contained in Xl that intersect Γ. Notice that

XΓ ⊂
⋃

p∈X∩Γ

TpXl.

Clearly we have
Xl ∩ Γ ⊂ XΓ ⊂ Xl,

and so either XΓ = Xl ∩ Γ or XΓ = Xl. The latter cannot be the case since it
gives

Xl ⊂
⋃

p∈X∩Γ

TpXl ⊂
⋃
p∈Γ

TpZ = P4.

Therefore, every line in Xl that intersects Γ is contained entirely within Γ. Let
s be a general line of XΓ. Since l ∈ Σ was general and Γ ⊂ Z is general, s
is a general line of Σ. Therefore, since we are in case three of corollary 1, the
tangent planes to X along s span a P6. Since Xl = X ∩ ωl this means that the
tangent planes to Xl along s span a P5, and so they cannot be contained in the
P4 spanned by the tangent planes to Z along Γ.

Finally, if h = 2, m = 1 and so Xl = ∞2P1, and the tangent planes to Xl along
the lines in the family span a P3. Since the tangent planes to Xl along a general
line of Σl must span a P6 (since we are in case three of corollary 1), we see that
the two dimensional family of lines covering Xl is different from Σl. Call this
family Fl. We are interested in

F =
⋃
l∈Σ

Fl.

Clearly dimF ≥ 3 since it sweeps out X. Suppose dimF = 3. By examining
the variety

{(l′, ω) : l′ ⊂ ω} ⊂ F × Ω

and its projections (note that dimπ−1
2 (ωl′) = dim Σl′ = 2), we see that there

is a three-dimensional family of ω containing the general l′ ∈ F . However, by
studying the variety

{(p, ω) : p ∈ ω} ⊂ X × Ω,
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we see that there is also a three-dimensional family of ω containing the general
p ∈ X. Therefore, when p ∈ l′, these families are the same and so any ω that
contains p will contain all of l′. Finally, the variety

{(p, ω) : p ∈ ω} ⊂ l′ × Ω

tells us that every ω ∈ Ω intersects l′. By the above this means that every ω ∈ Ω
contains l′ and so since l′ ∈ F was general, we get that each ω ∈ Ω contains all
of X which violates the nondegeneracy of X, since dimω = 6. So we cannot
have dimF = 3.

It must be, therefore, that dimF = 4 and F = Σ. Let Fl ⊂ F be the two
dimensional subfamily sweeping out Xl. Since F = Σ, for general l ∈ Σ, the
general l′ ∈ Fl will be a general line of Σ. Therefore, the fact that the family
of tangent planes to Xl along l′ spans a P3 violates the degeneracy of X. So we
deduce, at last, that N = 1, and so

X ∩ ωl ∩ ωl′ = Xp ∪ Y1,

where Y1 is a quadric containing l and l′, and p = l ∩ l′.

Step 5: Proving 2-4

Notice that, not only do we have X ∩ ωl ∩ ωl′ = Xp ∪ Y1, but we also have
that X ∩ ωl ∩ ωl′ is reduced (ie: every component has multiplicity one), since
otherwise p will be a triple point and the previous argument shows that this
can’t be the case. Therefore, by Bézout’s theorem,

degX = (degX)(degωl)(degωl′) = degXp + deg Y1 = degXp + 2.

Recall that we have already shown that if X ⊂ Pn is a k-dimensional, non-
standard, type R2 variety with n ≥ k+3 then for general p ∈ X, 2 ≤ degXp ≤ 3.
Therefore, we either have degX = 4 or degX = 5. Notice, finally, that if
degX = 4 then X is a minimal degree variety and so by proposition 7, it is
either an ∞1P3, a cone over a Veronese surface, or a quadric hypersurface.
The first is type R1, the second is standard, and the third is codimension 1.
Therefore, we cannot have degX = 4 and so we must have degX = 5.

Since degXp = 3, Xp is a cone over a cubic curve contained in P4. Such a curve
must have genus zero by proposition 8, and so we see that Xp is a rational cubic
cone.

Finally, since degX = 5, the section of X with a general 4-plane will be a curve
of degree five. By proposition 8, such a curve must have genus 0 or 1. We can
exclude the genus 0 case because of the proposition 9. We conclude that the
sectional curves of X are elliptic curves.
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Part 6: Proving 5

If X had a singular point of multiplicity at least three, then by projecting from
this point, we would obtain a fourfold of degree 2 in P6. This violates the lower
bound for the degree of a variety degX ≥ 1 + codimX.

Now suppose X has a double point. We can project (birationally) from the
double point to obtain a degree 3 fourfold, X ′ ⊂ P6. Then X ′ is a minimal
degree variety and so by proposition 7, either it is a quadric hypersurface, a cone
over a Veronese surface, or a rational normal scroll. The quadric hypsurface and
the cone over the Veronese surface are not of degree 3, and so we must have
X ′ = ∞1P3. Let Γ ⊂ X ′ be a general three plane, and let XΓ be the preimage
of Γ under the projection. We calculate degXΓ.

Clearly degXΓ 6= 1 since then X would be ∞1P3 and so it wouldn’t be of type
R2. Let Y ⊂ P7 be a quadric hypersurface vanishing on X. Let Λ be the 4-
plane spanned by XΓ (ie: the 4-plane spanned by Γ and the point of projection).
Clearly XΓ ⊂ Y , and if degXΓ ≥ 3 then Λ ⊂ Y , since otherwise we would have

2 = (deg Y )(degH) ≥ degXΓ ≥ 3.

But this means that X is not a component of the quadrics that contain it, which
is a contradiction. Therefore, we must have degXΓ = 2, and so X is a one-
parameter family of quadrics. However, we assumed X was nonstandard and so
it must be that X is smooth, as desired.

Note. Due to the classification of polarized, smooth varieties given in [I], we
see that if X ⊂ Pn is a four-dimensional, type R2 variety, with n ≥ 7, and
satisfying case three of corollary 1, then X is standard or it is the intersection
of G(1, 4) with two nontangent hyperplanes.

Note.

7.13.4 Proof of Theorem 7

Finally, we conclude the proof to theorem 7, which completes the proof of our
classification theorem for type R2 varieties with codimension greater than 2.

Claim. Let X ⊂ Pn be a k-dimensional variety of type R2 with n ≥ k + 3
satisfying case three of corollary 1. Then either X standard, or X is G(1, 4) of
a smooth linear section of G(1, 4).

Proof. Such an X will be such that its general 4-dimensional section will satisfy
the hypotheses of theorem 8. Therefore, either its 4-dimensional section is a
smooth extension of the Scorza variety, or it is standard, which says exactly
that either X is standard or else it is G(1, 4) or a smooth linear section of
G(1, 4).

Note. This completes the proof of theorem 7, which in turn, completes the
proof of theorem 3.
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8 Reflection

This theorem raises many questions, and in this section we discuss some of them.

8.1 The Difficulty of Codimension 2

Maybe the first batch of questions that comes to mind are ones similar to ’Why
is this approach not able to say anything about codimension 1 or 2?’ or ’Where
exactly does the argument rely on the codimension being larger than 2?’ The
answer to this is in the way we used the second fundamental form. In some sense
we began with the observation that if a variety contains many lines, then the
base locus of the second fundamental form at a point will have large dimension
(since the variety swept out by the lines through a point are contained inside
the base locus). A large dimensional base locus gives rise to a low dimensional
second fundamental form, and we were able to exploit this feature of type R2

varieties. However, low dimensional second fundamental forms also come about
via low codimension. Indeed, the second fundamental form is the image of the
dual of the normal space, and so if codimension is low, the normal space will be
small which will yield a low dimensional second fundamental form. Therefore,
the smaller the codimension, the less we were able to distinguish between a
variety with many lines and an arbitrary variety, and so it is no surprise that
our methods did not permit us to sufficiently handle this case.

8.2 What Can be said for Codimension ≤ 2?

First, notice that we do have at least two more examples of type R2 varieties if
we make no restriction on the codimension. The first is the intersection of two
quadratic hypersurfaces. To see that such a variety is type R2 we examine the
variety

Φ = {(Y, Y ′, l) : l ∈ Y ∩ Y ′} ⊂ PN × PN ×G(1, n),

where PN is the projective space parametrizing all quadric hypersurfaces in Pn.
Let π1 : Z → PN × PN be the projection onto the first two components and let
π2 : Z → G(1, n) be projection onto the third. Without too much difficulty we
could show that π1 is surjective, and so we have

dimF1(Y ∩ Y ′) = 2(n− 1) + 2(N − 3)− 2N = 2n− 8 = 2(n− 2)− 4,

and so Y ∩ Y ′ is type R2.

Another example of a type R2 variety is a cubic hypersurface. To see that this
is of type R2 we define the variety

Φ = {(Z, l) : l ∈ Z} ⊂ PM ×G(1, n),

where PM is the projective space parametrizing all cubic hypersurfaces. Let
π1 and π2 be the projections. This time it is a bit harder to show that π1 is
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surjective, however it is the case (see, for example, Alex Waldron’s thesis), and
so we have

dimF1(Z) = 2(n− 1) + (N − 4)−N = 2(n− 1)− 4,

and so the general cubic hypersurface is type R2 also.

In 2005, Landsberg and Robles showed that if a type R2 variety has the property
that for a general point p, every tangent line intersecting the variety at p does
so with multiplicity at least 3 (this is called the Fubini hypothesis), then the
variety is one of the five which we have already seen.

8.3 What About Varieties of Type R3?

I do believe it would be possible to apply similar results as we did to be able
to say something about varieties of type R3. However, at least two problems
would arise. First, as varieties of type R3 contain slightly less lines than those of
type R2, we would expect the dimension of the second fundamental form to be
slightly higher, which means that in order to realize a distinction between type
R3 varieties and arbitrary varieties, we would be forced to sacrifice a little bit
more codimension. While codimension at least 3 or 4 (which is what we would
likely have to settle for) is still a positive result, at some point, this technique
will stop being useful.

Another problem which we would likely encounter is an increased number of
counterexamples. For our R2 result, we only had the one exceptional type
R2, G(1, 4), to worry about. We split up the theorem into three cases and we
examined each one individually. In both cases that were exception-free, our
second fundamental form related analysis worked perfectly. However, to deal
with the exceptional case, we basically dropped the second fundamental form
approach and we were forced to hack around dealing with issues such as degree
and smoothness and genus, and referring to all sorts of preexisting classification
theorems. If we were to try to apply these techniques to deal with the type
R3 problem, it is likely that still more exceptions would arise and we would be
forced to appeal to this ad hoc form of argument much more consistently than
in the R2 problem.
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